Geodesic Flows and Model Theory of Differential Fields

Abstract: This thesis is dedicated to studying the interactions between two different approaches regarding differential equations: the model-theory of differentially closed fields on the one side and the dynamical analysis of real differential equations, on the other side.

In the first chapter, we present a formalism from differential algebra, in terms of D-varieties à la Buium over the field of real numbers (endowed with the trivial derivation), that allows one to realise both approaches at the same time. The main result is a criterion of orthogonality to the constants, based on the topological dynamic of its associated real analytic flow.

The second chapter is dedicated to the algebraic differential equations describing the (unitary) geodesic flow of a real algebraic variety endowed with an algebraic, non-degenerated symmetric 2-form. Using the previous criterion, we prove a theorem of orthogonality to the constants “in negative curvature’’, that relies on the results of Anosov and of his followers, regarding the topological dynamic - the weakly mixing topological property - for the geodesic flow of a compact Riemannian manifold with negative curvature. In dimension 2, we conjecture a more precise description - its generic type is minimal and has a trivial pregeometry- for the structure associated to the unitary geodesic equation.

In the third chapter, we present some motivations and partial results on this conjecture.