
A model-theoretic analysis of geodesic equations in negative
curvature

Rémi Jaoui

University of Notre Dame

Manchester Logic seminar

Rémi Jaoui
A model-theoretic analysis of geodesic equations in negative curvature



Introduction

Geometric stability theory: the geometry of definable sets in stable
theories. More concretely, the geometry of strongly minimal sets definable
in a given stable theory T . (Shelah, Zilber, Hrushovski, Pillay, ....)

Algebraic integrability of differential equations: the study of the
algebraic and transcendence properties of the solutions of algebraic
differential equations. (Liouville, Jacobi, Painlevé, Poincaré,...)

Aim of my talk: describe some interaction between these two subjects around
differentially closed fields and discuss examples coming from classical
mechanics (geodesic motions on Riemannian manifolds).

Plan of my talk
(1) Strongly minimal sets in DCF0.

(2) Painlevé-irreducibility.

(3) Invariant foliations and invariant webs.

We work in the ambient theory DCF0: unless otherwise stated, types, definable
sets and all notions of model theory are relative to the theory DCF0.
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The number of models of DCF0

Theorem (Shelah, 73’)

Let κ be an uncountable cardinal. There are 2κ models of the theory DCF0

pairwise non isomorphic.

a version of Morley’s theorem: a complete theory is ℵ1-categorical if and
only if it is almost strongly minimal: there exists a model M and a
strongly minimal set D such that M ⊂ acl(D).

in contrast, DCF0 is ω-stable and multidimensional: the family of
differential equations

y ′ = f (y) where f (x) ∈ C(x).

contains “many” pairwise orthogonal strongly minimal sets.

Definition

Two definable strongly minimal sets D1 and D2 are non-orthogonal if there is a
definable strongly minimal set D3 and definable finite-to-one maps f1 and f2

f1 : D3 → D1 and f2 : D3 → D2
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Higher-dimensional examples

In the same paper, Shelah conjectures that for every natural number n ∈ N,
there are new strongly minimal sets of order n:

y (n) = f (y , y ′, y ′′, yn−1)

leading to even more multidimensionality.

New ideas originated from the work of Zilber in the 80’s concerning totally
categorical theories:

Observation

Let D be a strongly minimal set. The (model-theoretic) algebraic closure
satisfies the exchange property: for any set A ⊂ D and x , y ∈ D

x ∈ acl(A, y) \ acl(A)⇒ y ∈ acl(A, x).

The pair (D, acl) is called a combinatorial pregeometry. To an arbitrary subset
B of D, one can associate a dimension:

dim(B) = max{| B0 | with B0 ⊂ acl(B) acl-independent set}
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Locally modular strongly minimal sets

Theorem (Zilber, 80’s)

Let D is a strongly minimal set definable in a ω-categorical theory. Then after
a possible extension of parameters, D is modular: for any acl-closed subsets
A,B ⊂ D:

dim(A ∪ B) = dim(A) + dim(B)− dim(A ∩ B).

In an ω-categorical theory, the algebraic closure is locally finite: the
algebraic closure of a finite set is always finite.

Zilber obtains a full classification of ω-categorical strongly minimal sets
and deduce among other things:

Any totally categorical theory is pseudofinite and finitely axiomatizable
among infinite structures (quasi-finite axiomatizability).

Such definable sets are called locally modular. When no extension of the
parameters is required, we say D is modular.
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Disintegrated strongly minimal sets

Definition

A strongly minimal set D is disintegrated if for any subset A ⊂ D

acl(A) =
⋃
a∈A

acl(a).

Zilber’s theorem: Let D be a strongly minimal set in an ω-categorical theory
(in a saturated model).

(i) D is disintegrated: D is a definable finite cover of a definable set D0 with
trivial induced structure.

(ii) D is purely modular: D is a definable finite cover of a definable set D0

such that there exists a bijection:

D0 → P(V ) where V is an Fq-vector space of inf. dim.

which send the definable structure to (an extension by constants) of the
linear structure on P(V ).

(iii) D is locally modular non modular: similar than (ii) with projective
geometry replaced by affine geometry over a finite field.
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Higher dimensional strongly minimal sets in DCF0

Let (E) : y (n) = f (y , y ′, y ′′, yn−1) be any algebraic differential equation of
order n ≥ 2. We denote by D the associated definable set of DCF0.

Theorem (Hrushovski, 90’s)

(i) If D is strongly minimal then it is modular.

(ii) Let A be a non-isotrivial simple Abelian variety. There exists a differential
equation defining a strongly minimal set DA ⊂ A containing all the torsion
points of A.

(iii) DA is modular and non-disintegrated: for every closed subvariety X of An

X ∩ Dn
A

Zar
is a union of cosets of subgroups of An.

(iv) Any non-disintegrated strongly minimal set of order n ≥ 2 is (up to a
generically finite to finite correspondence) of the form above.

[Freitag-Scanlon 15’, Casale-Freitag-Nagloo ’19] describe other strongly
minimal sets in DCF0 which carry remarkable disintegrated non ω-categorical
structures coming from arithmetic geometry.
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Geodesic differential equations

Let M be a smooth and connected algebraic subset of the Euclidean space RN .

Definition

A geodesic of M is a real-analytic curve γ : I → M such that:

γ is parametrized by its arc-length that is with constant speed = 1.

At every time t ∈ I , the acceleration γ′′(t) (seen as a vector in RN) is
orthogonal to the tangent space Tγ(t)M of M at γ(t).

.

The geodesics of M are the analytic solutions of a common algebraic
differential equation called the geodesic equation of M and denoted Geo(M).

If M = Rm then the geodesics are the lines.

Abstract point view on geodesics on M: they are the trajectories of free
(or undisturbed) particles moving on the curved space M.

A body moving on a level surface will continue in the same direction
at a constant speed unless disturbed. (Galileo’s inertia principle)
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Main Theorem

Let M be a smooth and connected algebraic subset of the Euclidean space RN .
Geo(M) denotes the geodesic equation of M.

Theorem

Assume that M is a compact surface with everywhere negative curvature.
Then the generic type of the algebraic differential equation Geo(M) (rel. to
DCF0) is minimal and disintegrated.

The definable set D defined by Geo(M) is R-definable set of DCF0 of
order (or algebraic dimension) 3. The theorem is a description of D
modulo a smaller R-definable set D0 :

D ∼ D ′ if and only if D 4 D ′ is small

that is contained in the set of solutions of a differential equation of order 2.

The intersection of all D ′ with D ′ ∼ D defines a complete type p ∈ S(R)
called the generic type of D.

A weaker notion of minimality adapted to types: a type p is minimal if all
forking extensions are algebraic.

The formalism of geometric stability theory can be developed at the level of
minimal types instead of strongly minimal sets.
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Algebraic integrability of differential equations

Painlevé 1895: Leçons sur la théorie analytique des équations différentielles:
professées à Stockholm

A question: Given an algebraic differential equation, when is it possible to
write down the solutions of (E) using only rational functions and classical
transcendental functions such as exponentials and elliptic functions?

A differential field of classical functions is a (differential) subfield of
(M(U), d

dt
) for some connected analytic open set U ⊂ C

K0 = C(t) ⊂ K1 ⊂ . . .Kn−1 ⊂ Kn = K

obtained from the field C(t) of rational functions using repetitively a set
(P) of permissible operations assumed to be classical integrations.
We say that the general solution of (E) can be expressed using only
classical functions if the generic type of (E) is realized in a differential field
of classical functions.

Everything can be made differential algebraic (without fixing a differential
embedding into a field of meromorphic functions)
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The set (P) of permissible operations

(P1): solving an algebraic equation: Ki ⊂ Ki+1 is an algebraic extension.
(P2): solving a linear differential equation: Ki+1 is generated over Ki by
solutions of

Y ′ = AY for some matrix A ∈ Mn(Ki )

(P3): solving an isoconstant abelian differential equation: Let Γ be a lattice
such that Cn/Γ is an Abelian variety. Ki+1 is generated over Ki by analytic
functions of the form

φ ◦ π ◦ (f1, . . . , fn)

where f1, . . . , fn ∈ Ki , φ is a meromorphic function on the Abelian variety Cn/Γ
and π is the projection.

Proposition (over countable differential fields K of C(t))

Let (E) be an algebraic differential equation over K .
The generic type of (E) is analyzable in the constants if and only if the general
solution of (E) can be expressed using only classical functions.

In short, a definable set D is analyzable in the constants if any minimal type
living on Deq is non-orthogonal to the constants.
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Example

Consider the differential equation:

(E1) : y ′ =
y

y + 1

Shelah (73’) proved that (E1) is not solvable by classical functions. It is
the first step of the proof of the multidimensionality of DCF0.
Rosenlicht (74’) entirely solved the problem of solvability by classical
functions for autonomous differential equations of order one:

y ′ = f (y) with f ∈ C(X ).

Higher dimensional phenomena: Consider

(E2) : z ′′ =
z ′z

z + z ′
+

(z ′)2

z

(E2) is also not solvable by classical functions but (up to a classical
integration) its resolution can be reduced to the integration of (E1) since:

(E2)⇐⇒

{
y ′ = y

y+1

z ′ = yz
.

Painlevé calls such second order equation reducible.
Rémi Jaoui
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Minimality and Painlevé-irreducibility

Let (E) be an algebraic differential equation (E) of order n ≥ 2

Definition

We say that (E) is Painlevé-irreducible if the generic solution of (E) can not be
realized in a differential field obtained from the field of rational functions with
operations (P1), (P2), (P3) and

(P4): solving any algebraic differential equation of order < n.

Proposition (over countable differential subfields of C(t))

The following are equivalent:

the differential equation (E) is Painlevé-irreducible,

the generic type of (E) in DCF0 is minimal.

The equivalence between these two formalisms goes back to Pillay ’97 (on
superstable differential fields) and Pillay-Nagloo ’11 (on Painlevé equations).
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Geodesic equations II

Smooth quadrics (Jacobi): the geodesic equation of a smooth quadric
surface M ⊂ R3 is solvable by classical functions.
This means that the generic type of Geo(M) is analyzable in the constants.

Surfaces of revolution: the geodesic equation of a “general” surface of
revolution M ⊂ R3 is an intermediate case: it is not Painlevé-irreducible
and it is not solvable by classical functions.

Main Theorem: The geodesic equation of a compact surface with negative
curvature is always Painlevé-irreducible.
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A dynamical approach: the geodesic flow

Until the rest of the talk, we fix M a compact Riemannian surface with
negative curvature and we denote by N = SM the sphere bundle of M.

points of N are pairs (x , u) where x ∈ M and u ∈ TxM is a unit vector
tangent to M. So N is a compact manifold of dimension 3.

For every (x , u) ∈ N, there is a unique geodesic

γ(x,u) : R→ N

such that γ(x,u)(0) = (x , u).

Definition

The geodesic flow is the 1-parameter subgroup of analytic diffeomorphism of N
given by letting all the geodesics evolve for a time t:{

R −→ Diff(N)

t −→ φt : (x , u) 7→ γ(x,u)(t)

The main theorem relies on results of Anosov (’69) describing the “chaotic”
dynamical properties of this one-parameter subgroup under the assumption of
negative curvature.
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Anosov flows: Local hyperbolic structure

Let (N, (φt)t∈R) be the geodesic flow of M. For every x ∈ N, we consider three
subsets of TxN:

the set Es(x) of “contracting” vectors:

w ∈ TxN with ‖ dφt(w) ‖t 7→∞−→ 0

the set Eu(x) of “expanding” vectors:

w ∈ TxN with ‖ dφt(w) ‖t 7→−∞−→ 0
the set E0(x) of “uniformly bounded” vectors w ∈ TxN such that

w ∈ TxN with t 7→‖ dφt(w) ‖ is uniformly bounded.

(a) Es(x),Eu(x) and E0(x) are three
transversal lines of TxN.
(b) The lines Es(x),Eu(x) and E0(x)
vary continuously with x ∈ N.
(c) Es(x),Eu(x) and E0(x) are
invariant:

dφt(Es,u,0(x)) = Es,u,0(φt(x))
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Compact Anosov flows: Global properties

Let F = Es ,Eu or E0 be any continuous field of line ( a continuous foliation)
on the manifold N.

Definition

The leaf of F through x ∈ N is the real-analytic curve obtained on N obtained
from x by always following the direction Fy ⊂ Ty prescribed by F .

The leaf of E0 though x ∈ N is the geodesic passing through x0 ∈ N.

The leaf Ws(x) of Es through x ∈ N is the set of points with the same
asymptotic future than x0:

Ws(x) = {y ∈ N such that d(φt(x), φt(y))→ 0 when t 7→ ∞}.

The leaf Wu(x) of Eu through x ∈ N is the set of points with the same
asymptotic past than x :

Wu(x) = {y ∈ N such that d(φt(x), φt(y))→ 0 when t 7→ −∞}.

Theorem (Anosov, Plante)

For every x ∈ N, the leaves Ws(x) and Wu(x) are dense in N.
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Algebraic counterparts: algebraic webs

Let X be a 3-dimensional smooth complex algebraic variety. We denote by TX

the tangent space of X and P(TX ) the projectivization.

TX \ X

��

// P(TX )

zz
X

Definition

An algebraic web on X is a closed subvariety of W ⊂ P(TX ) such that every
irreducible component of W dominates X and

π|W : W → X is gen. finite with generic fibres of cardinal dim(X ) = 3.

The singular locus of W is the set Z of points of X such that π|W is
ramified or admits an infinite fibre over x .

Outside of the singular locus, the fibre of π|W over x is a set of three lines

l1(x), l2(x), l3(x) ∈ P(TX ,x)

The set of lines x 7→ {l1(x), l2(x), l3(x)} vary algebraically with x ∈ X \ Z
Rémi Jaoui
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Invariant algebraic webs

Let (E) be an algebraic differential equation of dimension 3 defined over R. We
consider:

The space X (C) of (complex) initial conditions. It is the set of complex
points of a (smooth) algebraic variety X defined over R.
The space X (R) of real initial conditions and (φt)t∈R the real-analytic flow
of (E) acting on X (R).

Observation (real case)

Assume that X is smooth and X (R) Zariski-dense in X . Then there exists an
algebraic vector field vE on P(TX ) such that:
If W ⊂ P(TX ) is an algebraic web tangent to vE with singular locus Z then:

(i) The set Z(R) of real singularities of W is invariant under (φt)t∈R.

(ii) On the dense open set U(R) = X (R) \ Z(R), W defines a smooth real
analytic frame of the complexified tangent space TU(R) ⊗ C which is
invariant:

dφt(Wx) = Wφt (x) for all t ∈ R and x ∈ U(R).

Such an algebraic web is called an invariant web of (E).
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Minimality, invariant foliations and invariant webs

Theorem

Let (E) be a (real or complex) algebraic differential equation. Assume that the
set of complex initial conditions of (E) is a smooth complex algebraic variety
X = X (C) of dimension 3. Assume that:

(i) The differential equation (E) is not solvable by classical functions.
(ii) If F is an invariant foliation on X of rank r = 1, 2 then F has at least a

Zariski-dense leaf.

(iii) If W is an invariant algebraic web on X then W has at least a
Zariski-dense leaf.

Then the generic type of (E) is minimal and disintegrated. So (E) is
Painlevé-irreducible.

In (ii), algebraic foliations of rank one (resp rank two) are rational sections:

σ : X 99K P(TX ) (resp. P(T ∗X ))

It is called an invariant foliation if the Zariski-closure of the image of σ is
tangent to the vector field vE .
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Thank you for your attention!
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