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Motivation

A bit of history

@ At the end of the XIX century, Picard and Vessiot develop a Galois theory
for homogeneous linear differential equations.
At the same period, Poincaré publishes the three volumes of “Les
méthodes nouvelles de la mécanique celeste”.

@ ~ 1900: In his thesis, Drach studies the broader class of algebraic
differential equations whose complete solution can be algebraically
parametrized, knowing a fundamental system of solutions yi, ... ya:

(*) y =f(ci,...Cny¥1,...¥n) Where c1,..., ¢, are constants.

However, Painlevé finds inaccuracies in Drach's thesis.

@ 1980's: Conjoint developments of differential algebra and geometric
stability theory provide a new framework to study algebraic differential
equations.

@ Striking example: The work of Umemura (1987) and Nagloo-Pillay (2011)
on Painlevé transcendents.

Naive question

For a “highly non-integrable” algebraic differential equation, what is the nature
of the algebraic relations shared by its solutions?
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Motivation

Autonomous differential equations

A differential equation is autonomous if it is defined without any explicit
reference to the time t.

@ Syntactic form : (y®)* +5y.y® + (y')® = 0.

@ Explicit geometric form: a pair (X, v) where X is a (smooth) algebraic
variety X over some field k endowed with a vector field v.

Definition (Closed invariant subvarieties)

Let (X, v) be a differential equation and Z be a closed subvariety of X. TFAE:

(i) The closed subvariety Z can be written as the Zariski-closure in X of an
analytic solution v : D — X(C)".

(i1) The locally closed subvariety Z,., is tangent to the vector field v on X.

(iii) The sheaf of ideals Z is invariant by the derivation induced by v on X.

For a differential equation (X, v) and n > 1, we denote by Z, = Z,(X, v), the
set of closed irreducible invariant subvarieties of (X, v)".
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Motivation

Disintegrated differential equations

Definition
The differential equation (X, v) is called disintegrated if for each n > 3, every
Z € Z,(X, v) can be written as an irreducible component of

ﬂ 7r,-TJ-1(Z,-,j) where Z;; € Tr(X,v) and 77 : X" — X2,

1<i#j<n

@ (Hrushovski-ltai, 2003) Let C be a smooth projective curve of genus > 2
such that Jac(C) is a simple Abelian variety and let w be a global 1-form
on C. The differential equation

(E): w(%) = 1 satisfies Z,(E) is finite for every n € N.

@ (Freitag-Scanlon, 2014) Let (E) be the order 3 differential equation (E)
over Q satisfied by the j function and its Gl2(C)-conjugates. Then:

o The differential equation (E) is disintegrated.
@ The set Z»(E) is a countable set of finite-to-finite correspondences.
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Motivation

Trichotomy Theorem of DCF

Theorem (Hrushovski-Sokolovic, 1996)

Let (U, o) be a differentially closed field. The following description of minimal

types with parameters in (U, 0u) holds:

(i) If p is non-locally modular, then p is non-orthogonal to the generic type of
the fields of constants.

(i) If p is locally modular non disintegrated, then p is non-orthogonal to the
generic type of the “Manin’s Kernel” associated to a simple Abelian variety
A over U, which does not descend to the constants.

(iii) The type p is a minimal disintegrated type.

Question: For a “highly non-integrable” differential equation, what are the
possible minimal types involved in the semi-minimal analysis of its generic type?
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Main Theorem

Main setting

Let (X, v) be a smooth complex variety X endowed with a vector field v.

Theorem (Cauchy’s Theorem)

For every point p € X(C) and for an open disk D C C sufficiently small, there
is a unique analytic curve
Yo : D — X(C)*"

tangent to the vector field v and satisfying ~v,(0) = p.

We want to think as the analytic solutions of (X, v) as the dynamical system
on X(C)®" defined by:

DcC — Aut(X(C)™)
t — p > (L)
Two basic obstructions:

@ Explosion in finite time : even for t small enough, the local solutions ~,(t) may
not be defined for all p € X(C)?" simultaneously (solved by compactness).

@ Monodromy : There is no global determination of the logarithm on C* (consider
the differential equation x’ = ).
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Main Theorem

Main setting (Case of real numbers)

Main setting

Let (X, v) be an absolutely irreducible variety endowed with a vector field
defined over the field R of real numbers. Assume (}):

(i) The set X(R) is contained in the regular locus of X.
(ii) The set X(R)*" is compact.
(iii) The set X(R) is Zariski-dense in X (here, equivalent to X(R) # ().

Under (1), we have two different objects associated to the same differential
equation:
@ The real-analytic flow (M, (¢¢)ter) acting on the set M = X(R)* of
real-initial conditions.
@ The generic type of the differential (X, v), which is a stationary type of
the theory DCFy.
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Main Theorem

Anosov flows

Let M be a compact real-analytic manifold, v an analytic vector field on M and
(¢¢)ter its real-analytic flow. Choose a metric ||.|| on the tangent bundle TM
of M and define for x € M:

ES ={ve TM,., [|do:(v)|| “==° 0}

EX ={v € TM. , [|dé:(v)|| 7= 0}.

Definition

The flow (M, (¢¢):cr) is an Anosov flow if:

(i) E* and E* are (non-trivial) continuous sub-bundles of TM and the
convergence is uniformly exponentially fast.

(i) Transversality : TM = E* @ R.v @ E*.

“Local product structure™ Let € > 0 and p1,p2 € M. If (M, (b¢)ter) is a
(topologically transitive) Anosov flow, there exists a point g and t; < t> such
that:

@ The point g follows the orbit of p; (up to €) for t < t1.

@ The point g follows the orbit of p> (up to €) for t > t.
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Main Theorem

Examples of Anosov flows

@ Classical examples: Let ¥ C R” be a smooth compact (non-empty)
algebraic subset of dimension > 2.

Theorem (Anosov, 1969)

If ¥ has negative curvature, then the system of differential equations describing
the movement of a particle, constrained to move without friction on X is
described by a vector field with a real-analytic Anosov flow.

9 Robust notion: Let M is a compact (real)-manifold. The set of smooth
vector fields which define a compact Anosov flow on M is open in
C>(M, TM) endowed with the C* topology.

@ However, having a Anosov flow is not a “typical” property for a smooth
vector field on M. For example, KAM Theorem prevents small
perturbations of completely integrable Hamiltonian systems to satisfy such
a global hyperbolic behavior.
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Main Theorem

Main Theorem - Model theoretic form

Theorem (J.)

Let (X, v) be an absolutely irreducible D-variety over R. Assume that the
real-analytification X(R)®" of X is compact non-empty and contained in the
regular locus of X.

If the real-analytic flow (X(R), (¢t)tcr) is a mixing Anosov flow of dimension
3, then exactly one of the two following cases holds:

(i) Either the generic type of (X, v) is minimal and disintegrated.

(ii) Or there exists a strictly disintegrated type r of order 1 over R such that
the generic type of (X, v) and r'® are interalgebraic over R.

9 (Eberlein, 1973) Geodesic flows of compact manifolds of negative
curvature are always mixing Anosov flows.

@ Anosov alternative implies that a (topologically transitive) non-mixing
Anosov flow can always be written as the suspension of a diffeomorphism
over a constant roof function (hence, they are of a very special kind).
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Main Theorem

Main Theorem - Geometric form

For n > 2, denote by Z&%" the set of closed invariant subvarieties of (X, v)"
which project generically on all the factors.

A differential equation (X, v) is generically disintegrated if for every n > 3,
every Z € T8 can be written as an irreducible component (projecting
generically on each factor) of:

m 7, (Zi ) where Z;; € 75" and 7;; X" — X2

1<i#j<n

Theorem (J.)

Let (X, v) be an absolutely irreducible D-variety over R satisfying (7).

If the real-analytic flow (X(R)™, (¢¢)tecr) is @ mixing Anosov flow of dimension
3, then the D-variety (X, v) is generically disintegrated.

Moreover, one of the following two cases holds:

(i) Either Z5°" contains only generically finite-to-finite correspondences and
the generic type of (X, v) is minimal.

(ii) OrZ5™" contains at least a closed subvariety of X x X of codimension 1.
Moreover, in that case, Z5°" is a finite set.
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Main Theorem

Possible strengthening of the main theorem

@ More precise description of the algebraic relations shared by the solutions
of (X, v) are related to more precise description of the set 75 .

In particular, for an algebraically presented Anosov flow of dimension 3, it
is natural to expect that the set Z5 " is both finite and consists of
finite-to-finite correspondences.

@ (Pereira-Couthinho, 2005) For a “very generic” rational vector field” on a
smooth projective variety X , every non-generic solution of (X, v) is
stationary at a singular point of v.

Under that hypothesis, the distinction between Z&" and Z, collapses.

@ Question: Similar statements for other “typical” dynamical behavior of
smooth vector fields on a compact manifold ?

A particularly interesting case is that of small perturbations of algebraically
integrable Hamiltonian systems (such as the three-body problem).
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Ingredients of the proof

Model-theoretic core of the proof

Theorem (J.)

Let (U, o) be a differentially closed field, Co be a subfield of the field C of
constants of (U, du) and p € S(Co) be a stationary type.

If p is a type of order 3 which is semi-minimal and orthogonal to the constants,
then one of the two following cases holds:

(i) The type p is minimal and disintegrated.

(il) There exists a strictly disintegrated type g € S(A) of order 1 such that
q® and p are interalgebraic over Cp.

@ The type p is non-orthogonal to a minimal type r € S(K) (defined after a
possible extension of the parameters). The proof consists in applying
Hrushovski-Sokolovic Theorem to the type r.

@ Hence, it suffices to prove that the generic type of a differential equation

of dimension 3 (satisfying (1)) with a mixing Anosov flow is both
orthogonal to the constants and semi-minimal.
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Ingredients of the proof

Orthogonality to the constants and semi-minimality

Let (X, v) an absolutely irreducible variety endowed with a vector field. A
rational dominant map f : (X, v) --» (Y, w) towards another D-variety (Y, w)
over k is a rational map f : X --» Y such that:

df(v) = w.

Proposition (Orthogonality to the constants)

The generic type of (X, v) is orthogonal to the constants if and only if for
every n € N, there are no rational dominant map f : (X, v)" -—-» (A',0).

Proposition (Semi-minimality)

Assume that they are no dominant rational map f : (X, v) --» (Y, w) towards
another D-variety (Y, w) unless dim(Y) = 0 or dim(Y') = dim(X)
(equivalently, unless Y is a point or f is generically finite).

Then, the generic type of (X, v) is semi-minimal.
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Ingredients of the proof

Weakly mixing dynamics

Let (M, (¢+)tcr) be a metric flow. For every (non-empty) open subsets
U,V C M, set

NU,V)={teR| ¢:(U)NnV # 0}
The flow (M, (¢¢)ter) is called topologically transitive if N(U, V) # 0
whenever U,V C M are non-empty open subsets.

Lemma (Weakly mixing flows)

Let (M, (¢:)tcr) be a metric flow. TFAE:
(i) The flow (M, (pt)ter) X (M, (¢¢)ter) is topologically transitive.
(ii) For every topologically transitive metric flow (N, (v:)tcr), the flow
(N, (e)ter) X (M, (¢¢)ter) is topologically transitive.
(iii) The set

{N(U, V) | U,V non-empty open subsets of M} C P(R)

form a filter basis on R.
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Ingredients of the proof

Invariant foliations on a smooth D-variety (X, v)

Definition

An invariant foliation F on (X, v) is an involutive saturated coherent subsheaf
of the sheaf ©x /, of vector fields on X, invariant by the Lie-derivative £, of
the vector field v.

Proposition

Let f : (X, v) --» (Y, w) be a rational dominant map defined and smooth on a
dense open set U. Then:

(1) The tangent foliation Tr = Ker(dfiy) of Ty« extends uniquely to a
(possibly singular) foliation F¢ on X of rank dim(X) — dim(Y).

(2) The foliation F¥ is invariant on (X, v).

(3) The singular locus of Fs is a closed invariant subvariety of X.
. o

Assume that (1) holds and that the real-analytic flow (M, (¢:)ccr) of (X, v) is
a mixing Anosov flow of dimension 3.

Using the continuous sub-bundles E* and E* of TM, we proved that any
(algebraic) invariant foliation F on (X, v) of positive rank has Zariski-dense
leaves.
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