
HOMEWORK: MODEL THEORY OF DIFFERENTIAL FIELDS

DUE ON FRIDAY MARCH 8TH

Convention/notation. All differential fields are of characteristic zero. If k is a differential field, k⟨α1, . . . , αn⟩
always denotes the differential field generated by α1, . . . , αn and k.

1. Part 1. Kolchin’s primitive element theorem

The goal of this exercise to prove:

Theorem A (Kolchin, 1942). Let k be a nonconstant differential field and let K = k⟨α1, . . . , αn⟩ be a finitely
generated differential field extension of k such that each αi is a solution of a nonzero differential polynomial
Ai ∈ k{X}. Then there exists γ ∈ K such that

K = k⟨α1, . . . , αn⟩ = k⟨γ⟩.

An element γ satisfying the conclusion of the theorem is called a primitive element of the differential field
extension K/k.

1.1. Primitive elements and automorphisms. Let k be a differential field and fix U |= DCF0 an ω-
saturated and ω-homogeneous extension of k.

(1a) Show that to prove the theorem, we may assume that k is a finitely generated differential field.
(1b) Let α1, . . . , αn ∈ U and set K = k⟨α1, . . . , αn⟩. Under the assumption of (1a), show that an element

γ ∈ K is a primitive element of K/k if and only if for every σ ∈ Aut∂(U/k),
σ(γ) = γ ⇒ σ(αi) = αi for i = 1, . . . , n.

1.2. Non-vanishing of non-zero differential polynomials. Let k be a nonconstant differential field. The
goal of this question is to prove that if A(X1, . . . , Xn) ∈ k{X1, . . . , Xn} is a nonzero differential polynomial
then there exist a1, . . . , an ∈ k such that

A(a1, . . . , an) ̸= 0.

(2a) Show that it is enough to prove the previous statement for n = 1.
(2b) Consider g ∈ k with ∂(g) ̸= 0. Replacing the derivation ∂ by the derivation

D =
∂

∂(g)
∈ Der(k)

show that we may assume that k contains an element t such that ∂(t) = 1 in order to prove the
previous statement.

(2c) Consider a nonzero A(X) ∈ k{X} and fix t ∈ k an element with ∂(t) = 1. Show that we can find a
polynomial χ = χ(t) ∈ Q[t] such that

A(χ) = P (χ, χ′, . . . , χ(n)) ̸= 0.

1.3. Existence of primitive elements. Let A1(X), . . . , An(X) ∈ k{X} be nonzero differential polynomi-
als. Consider the differential radical ideal I of k{X1 . . . , Xn, Y1, . . . , Yn, T1, . . . , Tn} given by

I = {A1(X1), . . . , An(Xn), A1(Y1), . . . , An(Yn), T1 · (X1 − Y1) + . . .+ Tn · (Xn − Yn)}
and the decomposition

I = I1 ∩ · · · ∩ In

into prime differential ideals given by Ritt second theorem.
(3a) Show that for every i, we can find x1, . . . , xn, y1, . . . , yn, t1, . . . , tn ∈ U such that

Ii = I(x1, . . . , xn, y1, . . . , yn, t1, . . . , tn/k)
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(3b) With the previous notation, show that if xi ̸= yi for some i then there exist a nontrivial differential
polynomial Li ∈ k{T1, . . . , Tn} such that

Li(t1, . . . , tn) = 0

(3c) Conclude that there exists τ1, . . . , τn ∈ k such that the function

x1, . . . , xn 7→ τ1x1 + . . .+ τnxn

is injective when evaluated in the cartesian product of the solution sets in U of A1(X), . . . , An(X).

1.4. Conclusion.
(4) Prove Theorem A.

2. Part 2. Liouville’s theorem on integration in finite terms

The goal of this second exercise is to prove:

Theorem B (Liouville, 1833). Let f(t) be an algebraic function. Assume that the primitive
∫
f(t)dt is an

elementary function. Then ∫
f(t)dt = R0(t, f(t)) +

n∑
i=1

ci · ln(Ri(t, f(t)))

where the ci are complex numbers and the Ri(X,Y ) are rational functions of two variables.

Fix k a differential field with an algebraically closed field of constants.

2.1. Elementary differential fields extensions. We say that an extension of differential fields K/k is
elementary if K and k have the same field of constants and there exists a tower of differential fields

k = k0 ⊂ k1 ⊂ · · · ⊂ kn = K

such that each ki+1/ki is either an algebraic extension, generated by a logarithm of an element of ki or by
the exponential of an element in ki.

(1) Let K/k be an elementary differential field extension with td(K/k) = n. Show that there exists n
K-linearly independent one-forms ω1, . . . , ωn ∈ Ω1(K/k) of the form

ωi = dyi/yi − dxi with xi ∈ K, yi ∈ K∗

such that L∂(ωi) = 0 for i = 1, . . . , n.
We say that a meromorphic function f(t) ∈ M(U) is an elementary function if its restriction to some
nonempty subset of U is contained in an elementary differential field extension of C(t).

2.2. Reduction to the algebraic case. Let f(t) be an algebraic function and assume that
∫
f(t)dt is an

elementary function.
(2a) Consider K/C(t)alg an elementary differential field extension containing g(t) =

∫
f(t)dt. Show that

there exists constants c1, . . . , cn ∈ C, x1, . . . , xn ∈ K and y1, . . . , yn ∈ K∗ such that

dg =

n∑
i=1

ci ·
(dyi
yi

− dxi

)
∈ Ω1(K/C(t)alg).

(2b) Conclude that

f(t) = S′
0(t) +

m∑
i=1

γi ·
S′
i(t)

Si(t)

where the γi are complex numbers and S0, . . . , Sm ∈ C(t)alg.

2.3. Reduction to the rational case. Denote by L the normal extension of C(t, f(t)) generated by
S0(t), . . . , Sm(t) and set G = Gal(L/C(t, f(t)).

(3) Using Galois theory, prove Theorem B.
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