LECTURE 5. DIFFERENTIAL FORMS

REMI JAOUI

5.1. Definition. Let K/k be a field extension of characteristic zero and let M be a K-vector space. A
k-derivation on K with values in M is an additive morphism
dy (K, +) = (M, +)

satisfying

e (the Leibniz rule) dys(z - y) = dp(x) -y +x - dy(y) for all z,y € K

o (k-linearity) dps(x) = 0 for all x € k.
Notice that using the Leibniz rule, the second property is indeed equivalent to k-linearity of dp; when K are
M are both equipped with their natural structure of k-vector space.
Lemma 5.1. Let K/k be a field extension. There exists a (unique) pair (Q'(K/k),d) satisfying

(x) QYK /k) is a K-vector space and d is a k-derivation on K with values in Q' (K/k)

satisfying the following universal property: for every pair (M,dyr) satisfying (%), there exists a unique mor-
phism of K-vector spaces Q' (K /k) — M such that the following diagram commutes:

K —% QY(K/k)
p
M

The pair (Q'(K/k),d) is called the module of one-forms on K/k or the module of k-differentials on K.

Proof. Consider E = Spang{dz | z € K} the K-vector space whose basis is given by symbols of the form
dx for x € K and R the sub-vector space of E generated by all the elements of E of the form

0(x +y) — dx — 0y, d(zy) — xdy — yox and dc
where x,y ranges over all the elements of K and ¢ ranges over all the elements of k. We define
QYK/k)=FE/Rand d:x € K — z = dz € QY(K/k).

Certainly, (QY(K/k),d) satisfies (x). Now consider (M, dys) another pair satisfying (). The function 6z
dpyrx extends uniquely to a morphism of K-vector spaces ¢ : E — M. Since M satisfies (%), we have
#(R) C Ker(¢) so that ¢ factors through

¢:EB/R=QY(K/k) — M.

By construction, for every z € K,

#(6x) = ¢(0x) = dura
which shows that the diagram in the lemma commutes. Uniqueness follows from the fact that Q'(K/k) is
generated by the dx with = € K (exercise). O

The Leibniz rule together with additivity are sufficient properties to ensure that the differential calculus
happens “as intended”. For example,

Exercise 5.2. Let K/k be an extension of differential fields, P(X1,...,X,) € k[X1,...,X,] and z1,...,2, €
K. Then

(1) d(P(zl,...,zn))zz op (215 2n) - dz
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Lemma 5.3. Let K/k be an extension of differential fields and denote by O the derivation on K. There is
a unique additive map Lg : QY (K/k) — QY(K/k) satisfying:
e the Leibniz rule: for all a € K and all w € QY(K/k)
Lola-w)=0(a) w+a-Low).
e the chain rule: do 0 = Lyod.

Proof. The uniqueness part is clear since the one-forms of the form dx and x € K generate Q' (K /k). Indeed,
ifw=>",\dz then

w)icaui.d% zn:( i+ X - d(O(x ))).

i=1
To show existence, recall the construction of Q! (K /k) = E/R from Lemma and consider the map defined

by the previous formula
Lo : Z/\ 5%92( )6z + N - 6(9(a )))

which is a additive map from F to E. To show that it descends to Q' (K /k), we need to show that Ls(R) C R.
Consider z,y € K

Lo(8(xy) — ady — yox) = 6(0(zy)) — A@)3(y) — yd(d(x)) — A(y)d(x) — 26(A(y))
(50() + y0(x)) — 6(xd(y)) — d(y() )

. (53; ) — 26(0(y)) — 9(x)5(»))
(8(y0(@)) — yo(D(@)) — O(y)o(x)) € R

as it is the sum of three elements from R. The other generators of R satisfy (easier) identities (exercise). It
follows that Lg factors through an additive map Ly : E/R — E/R satisfying the required properties. O

+

Definition 5.4. Let K/k be an extension of differential fields. The additive map
Lo: QN K/k) = QYK /k)

given by Lemma [5.3]is called the Lie-derivative of the derivation 0.

5.2. Linear independence of one-forms.

Theorem 5.5. Let K/k be an extension of fields of characteristic zero and (zo | @ € A) a collection of
elements from K. Then

(20 | @ € A) is a transcendence basis of K/k < (dzs | o € A) is a K-linear basis of Q' (K/k).
In particular, td(K/k) = 1dimg (Q (K /k)).
Proof. = Assume that (z, | @ € A) is a transcendence basis of K/k. To see that the (dz, | @ € A) generates

OY(K/k), it is enough to see that its K-linear span contains all the elements of the form dz for x € K. By
assumption and characteristic zero, any such element satisfies a polynomial relation of the form

P
P(z,%Zy) =0 and a—(m,@) # 0 where P € k[Xo,...,X,] and Z5 = 2oy, - - -5 2a
0

00X, "
Equation implies that

orP =\ oP
67)(0(‘%’ Za)dx + ; 87)(2(*%3 ZOt)dZOéi

which shows that dz is in the K-linear span of the (dz, | @ € A). It remains to show that the (dz, | @ € A)
are K-linearly independent in Q!(K/k).

0=dP(z,75) =

Claim. For every a € K, there is a (unique) derivation O, € Der(K/k) on K trivial on k such that
Oa(a) =0 and 0,(8) =0 for every B#a € A
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Proof of the claim. Decompose K/k as
ECL=Fk(zq|la€eA)CK

The existence and uniqueness of 9, as a derivation of Der(L/k) follow from the presentation of L/k as a
purely transcendental extension. The claim follows from the fact that any derivation on L extends uniquely
to K since K/L is an algebraic extension. ]

Now consider a (finite) K-linear relation among the dz, given as
Z Aq - dzq = 0 where A\, € K all but finitely many are zero
acA

and denote by d, the derivation associated to z, given by the previous claim. By the universal property of
Lemma [5.1] we can find a K-linear form

bo : M(K/k) = K
with the property that ¢, (dz) = 04(2) for all z € K. Tt follows that for all 8 € A,
0=05(>_ Aa-dza) = Y Aa-dp(dza) = As.
acA acA

Hence, all the coefficients in the linear combination are trivial. We have therefore shown that the (dz, | @ €
A) are K-linearly independent and hence form a K-basis of Q' (K/k).

<. For the converse, assume first for the sake of contradiction that the z, are not algebraically independent
over k. We can therefore find an algebraic relation of the form

oP
P(z3,%Zo) = 0 and 87(2'5,%) # 0 where P € k[Xy,...,X,] and Z5 = zays- - - Za,
0

and the q; are distinct from S. Using Equation [I} we obtain as previously
P “ oP
0=dP(z5,%5) = %(zﬁ,z)dw + ; g—Xi(zg,%)dzm

which implies that 687130(25,%) = 0, a contradiction. We have therefore shown that the z, are algebraically
independent over k. To show that they form a transcendence basis of K/k, consider the decomposition

ECL=k(zq|lo€eA)CK

and assume for the sake of a contradiction that K /L is not an algebraic extension. We can therefore find a
derivation @ on K which is trivial on L but not on K; say d(x) # 0 for some element x € K. On the one

hand, we can write
dr =Y Ao - dzg
acA

where the right hand side is a finite sum. On the other, we have a K-linear form ¢ : Q'(K/k) — K such
that ¢(dz) = d(z) for all z € K by the universal property of Lemma We conclude that

0#0(x) = ¢(dz) = Y Ao~ d(dza) = 0
acA

which is a contradiction. This finishes the proof of the theorem. O

5.3. Duality between one-forms and derivations.

Corollary 5.6 (Second presentation of Q'(K/k)). Assume that K/k is an extension of finite transcendence
degree then

Q' (K/k) = Der(K/k)* and d : x + (0 + 0(x)).
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Proof. The map d is well-defined since the evaluation of a derivation at a point is K-linear with respect to
the derivation. Furthermore, k-linearly of d is obvious since if 2 € k then 9(x) = 0 for all z € k. Finally, for
x,y € K and 0 € Der(K/k)

d(zy)(9) = d(xy) = d(x)y + 20(y) = (yda + xdy)(d)
and the Leibniz rule follows. It follows by the universal property that
¢ : Q(K/k) — Der(K/k)*

sending the differential d on Q'(K/k) to the newly defined d on Der(K/k)*. Pick z1,..., z, a transcendence
basis of K/k. By Theorem
QYK/k) = Kdz & ... ® Kdz,.

Using the claim of the previous theorem, we also obtain n derivations 0, ...,0, on K such that 9;(z;) =0
if ¢ # j and is equal to 1 if i = j. An easy exercise shows that

Der(K/k) = Koy & ... ® K0,.

0ifi £

Finally, since dz;(0;) = 0;(z;) = ) lfl 7&] , the morphism ¢ sends the basis defined dz; to the dual of
ifi=j

the basis defined by 9;. It follows that ¢ is an isomorphism. O

Definition 5.7. Let K/k be a finitely generated extension of fields and r > 1. A two-form w on K/k is a
K-bilinear map

w : Der(K/k) x Der(K/k) - K
which is alternating in the sense that for every dy,02 € Der(K/k), w(01,02) = —w(Da, 01).

We denote by Q?(K/k) the K-vector space of 2 forms of dimension (3). It is well-known (see any reference
in linear algebra) that we have (anti commutative) product denoted

A QYEJE) x QYK /E) — Q*(K/E)

given by the formula

(W1 Aw2)(01,02) = wi(01) - w2(2) — w1(02) - w2(0h).

Lemma 5.8. Let K/k be a finitely generated extension of fields and w € Q' (K/k). Then the map
dw : (91,02) = O1(w(02)) = D2(w (1)) — w([01,02])

where [01,02] = 01 0 02 — 02 0 01 is the Lie bracket of derivations in Der(K/k).

Proof. The definition of dw shows that dw is alternating. To show that it is bilinear, it is therefore enough
to show that it is linear in the first variable. Consider f € K and 04,02 € Der(K/k).

dw(f01,02) = [fO1(w(02)) — Do2(w(fO1)) — w([fOr, D))
= [01(w(02)) — O2(fw(01)) — w(f[O1, 2] — O2(f)Oh)
= [O(@(02)) — (f0a((D0)) + B2 Nw(@1)) — (fw(Br,02)) — Dol (D))
= f01(w(02)) — fO2(w(1)) — fw(O1,02)) = fdw(Dr,D2)

The proof of additivity is easier and left as an exercise. a

Definition 5.9. We say that a one-form w € Q'(K/k) is closed if the two-form dw € Q?(K/k) given by
Lemma [5.8] is equal to zero.
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5.4. An exact sequence. Let K/k be a field extension of characteristic zero and consider L an intermediate
subfield. We construct two morphisms of K-vector spaces.

(1) Viewing Q'(K/k) as an L-vector space, we obtain a morphism of L-vector spaces
ip : QY L/E) — QYK /)
obtained by applying Lemma tody: L — QY K/E).
The usual properties of the tensor product gives an identification
Homy _yeet (Q(L/k), QN (K/k)) =~ Homg —pect (QH(L/K) @1 K, QYK /k))

which is the (functorial) adjunction between extension and restriction of scalars in commutative algebra. So
that the morphism 4; corresponds to a morphism of K-vector spaces:

g QYL/Ek) @ K — QY(K/k)
(2) Applying Lemmato the extension K/k and the morphism d = dg, 1, : K — Q'(K/L), we obtain
a morphism of K-vector spaces
sp: QYK/E) — QYK/L).
Corollary 5.10. With the notation above, the sequence
0— QYL/K) @ K 25 QY (K/k) %5 QY(L/K) = 0
is a short exact sequence of K -vector spaces
Proof. To see that jy, is injective, it is enough to see that iy, is injective. This follows from Theorem [5.5] and
the fact that a transcendence basis of L/k can be completed into a transcendence basis of K/k. Similarly
any transcendence basis of K /L can be completed into a transcendence basis of K/k so that sy, is surjective
by Theorem [5.5] Finally, the property that sz, o j;, = 0 follows from the fact
sr(dxjef) =dpf =0 forany f € L

and that Q'(L/k) ®, K is generated as a K-vector space by one-forms of this form. O
5.5. Geometric interpretation. Let k be an algebraically closed field. We start by recalling some basic
facts about algebraic geometry over an algebraically closed field k and refer to [? | for more details. An

affine algebraic variety X is a Zariski-closed set of k™ for some n. In other words, an affine variety is defined
by a (positive) system of the form

Pl(l‘l, ...,xn)z()

Pk(l‘l, N ,CL‘n) =0
The Zariski-topology on k™ induces by restriction a noetherian topology on X also called the Zariski-topology.
Hence every affine algebraic variety X is equipped with the structure of a quasi-compact topological space.
We say that X is an irreducible variety if it is irreducible for this noetherian topology.

Definition 5.11. Let U be an open set of X. We say that a function f : U — k is regular around some
point x € U if there exists a neighborhood V of z in U such that

flxy, ... xy)

2 Tlyene,Tp) = =

( ) flU( n) g(xla"wxn)
where f,g € klz1,...,2,] and g does not vanish on V. We say that f is a regular function on U and write

f€0Ox(U) if f is regular around every point z € U

Clearly, the regular functions on any given open set U of X form a k-algebra and if V' C U then we obtain
by restriction a morphism of rings Ox (U) — Ox (V). It follows that

{Ox(U) | U C X}
is an inductive system of rings.

Definition 5.12. Let X be an irreducible affine algebraic variety. The inductive limit k(X) = limyc xOx (U)
of this system is called the field of rational functions on X.
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In other words, a rational function on X is a regular function f € Ox(U) on some nonempty open set U of
X and two rational functions f, g are equal if they agree on some non empty open subset of X.

Lemma 5.13. Let X be an irreducible affine variety.
(i) The fraction field k(X)/k of X is a finitely generated field extension of k and every finitely generated
field extension of k is of this form.
(ii) For every x € X, the ring
Oxp:={f € k(X) | f is a regular function around z } C k(X)

is a local ring and the unique mazimal my is formed by the functions f € Ox , satisfying f(x) = 0.

Proof. (i). Let f # 0 be a rational function and let U be an open set such that
P(z1,...,z,)
Q(z1,...,x,)

as in Equation (2). Denote by V' the intersection of U with U(P) = {z € X | P(z) # 0} which is open and
non empty since f # 0. Set

f|U(1'1,...7(En) =

_Qx1,...,2p)

P(z1,...,xy)
which is a regular function on V' by definition. Clearly f-g = 1in Ox(V) so that f-g =1 € k(X). Tt
follows that k(X) is a field. Now X C k™, the restrictions to X of the coordinates functions z1,...,z, on k"

are regular functions on X and Equation (2]) implies that they generate k(X)/k. The converse of (i) follows
from the (algebraic) Nullstellensatz (exercise).

(ii) Set my = {f € Ox | f(z) = 0}. The fact that Ox , is a local ring with m, as the unique maximal
ideal follows from the fact that

f € Ox 4 is invertible iff f ¢ m,.
The proof of this easy fact is left as an exercise. a
Our goal is to give a geometric interpretation for
Der(k(X)/k) and Q' (k(X)/k).
Definition 5.14. Let X be an irreducible affine algebraic variety and x € X. We say that a derivation
0 € Der(k(X)/k) is regular at z if (Ox ) C Ox.. We say that a one-form w € Q' (k(X)/k) is regular at
x if for every derivation 9 € Der(k(X)/k) regular at x, the function w(9) € k(X) is regular at x.
It follows immediately from the definitions that if 0 is regular at any point € U then
9(0x(U)) c Ox(U)

and similarly that if a one-form w is regular at every point z € U and 0 is a derivation regular on U

then w(d) is a regular function on U. For this reason we denote by Der(Ox(U)/k) and Q'(Ox(U)/k) the
Ox (U)-modules of regular derivations and of regular one-forms on U.

Example 5.15. Set X = k" so that k(X) = k(x1,...,2,). If 29 € X then
Ox 2, ={P/Q | P,Q € k[z1,...,2,] and Q(zo) # 0}

It follows easily that the partial derivatives

of
8.731'
are regular derivations at any point zo € X. Since they form a k(X)-basis of Der(k(X)/k), any derivation

0 can be written as .
0= fi0:
i=1

and 0 is regular at x if and only if for every i, the function f; is regular at z. Similarly, the dual basis of
QY (k(X)/k) is given by the one-forms dz; and any one-form can be written as

n
w= Zgi - d;
i=1

8an—>
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which is regular at x iff all the g; are regular at x.

Definition 5.16. Let X be a Zariski-closed subset of k™ and defined by the vanishing of fi,...,f, €
k[z1,...,2,]. The tangent space TX of X is the Zariski-closed subset of k?" given by the vanishing of

filxr, oo xn)y oo fs(@r, ooy xn), L1, - oy Tny €1, ooy €n)y ey Le(@1, oo Ty €1, 00 €p)
where L; = Z?:l gic] €5 €k, .. €, 6.

Note the projection 7 : k2" — k™ restricts to a regular map

x :TX — X
and for any point p € X, the fiber denoted T°X,, of mx over p is called the tangent space of X at p. Since the
L; are linear in the coordinates €q,...,€,, T X, is always a linear subspace of k" given by the vanishing of
af i
L; .
7 (pv €1, , € Z 8ZEJ

In particular, mx is always surjective. We say that X is a smooth algebraic variety if the dimension of T'X,,
does not depend on p.

Definition 5.17. Let X be an irreducible algebraic variety and let U be an open set. An algebraic vector
field on U is a regular map
U—TX Ck™

which is a section of wx. In other words, an algebraic vector field is a tuple sq,...,s, € Ox(U) such that
the function

v(p) = (ps51(p)s - -+ 5n(p))
takes values in TX. We denote by Z(U) the space of regular algebraic vector fields on X.

Construction 5.18. Let X be a Zariski-closed subset of k™ and let U be an open set of X. The coordinates
functions x1, ..., x, on k™ define by restrictions regular functions denoted 7, ..., %, on X and consider

Der(Ox(U)/k) = Ox(U) x ... x Ox(U)
given by 0 — vy = (0(Z71),...,0(Ty)).
Proposition 5.19. With the notation above, the map 0 — vy takes values in Z(U) and moreover:
(i) it is an isomorphism of Ox (U)-modules
Der(Ox(U)/k) = E(U)

(ii) if I € Ox(U) is an ideal and Z is the corresponding Zariski-closed subset of U then I is a differential
ideal of (Ox (U),0) for 0 if and only if vy |z : Z — TX takes values in TZ.

Proof. Clearly vs is values in Z(U) since in Ox (U), we have fori =1,...,s

fi(xilw"?l‘is) =0

which gives after derivation that

Ofi
> Gy 0t =0
5:0]
fori=1,...,s. It follows that the regular functlon

p= (p,v1(p)s -5 va(p))

takes values in TX. To check (i), first note that Z7, ..., T, generate the function field of Ox (U) and hence
that the morphism is injective. It remains to show surjectivity. For that purpose, consider an open set V' of
k™ such that V N X = U so that the restriction morphism

O(V) = Ox(U)

is surjective and consider v = (sy,..., S, ) an algebraic vector field on X. and pick lifts ¢1,...,t, of s1,..., 8,
to O(V). By definition,
klz1,...,2n] COV) C k(z1,...,2,)
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and hence there is a unique derivation

9y : O(V) = O(V)
such that dg(x;) = t; and which is trivial on k. To show that it descends to a derivation on Ox (U), we show
that the ideal (f1,..., fs) is a differential ideal. indeed, if f = f; then

which is equal to zero in Ox (U) since v takes values in TX. (ii) is left as an exercise using (i). O
Proposition 5.20. Let X be an irreducible Zariski-closed subset of k™ and let U be a smooth open set.
Denote by TU the inverse image of U under mx and set
FiU) :={f € Orx(TU) | for everyp € U, fir,uv : T,U — k is linear }
Then the map
W (0 wouvy € Ox(U))
defines an isomorphism of Ox (U)-modules
F1(U) ~ Hom(Der(Ox (U)/k)), Ox (U)) = Q' (Ox (U)/k).
Proof. Clearly, @ + w is a morphism of Ox (U)-module. To show that it is an isomorphism, we will build

the inverse. Let w € Q*(Ox (U)/k). Since U is smooth, through any point ¢ € TU we can find a vector field
v in a neighborhood of p = m(¢) such that v(p) = q. We set

w(q) = w(dy)(p)
where 0, is the derivation associated to the vector field v. Note that if w is another vector field satisfying
w(p) = q then
(w—=v)(p) =0= (6, — ) (Mmp) T My = w(dy, —dyw)(p) =0
using (ii) of the previous proposition and the fact that w is regular. It follows that the function & is well-
defined. Standard results from algebraic geometry ensures that this is a regular function. This completes
the proof of the proposition. O

Definition 5.21. Let ¢ : X — Y be a morphism of algebraic (or analytic) varieties and denote by
T = (¢p,dp) :TX = TY.
If w is a regular one-form on Y, the one-form ¢*w on X defined by
&Z} =woT¢
is called the pullback of w by ¢.

5.6. Frobenius integrability theorem. We now assume that £k = C and that X is a smooth affine algebraic
variety. We say that a regular one-form on X vanishes at p if the linear form &(p) : T,X — k is zero.

Theorem 5.22 (Frobenius integrability theorem for closed forms). Let w be a closed regular one-form on
X which does not vanish at any point p € X and consider the distribution of hyperplanes given by

H:pw— Ker(w(p) CTX,

Given any point pg € X, there exists an analytic neighborhood U of py and an analytic submersion f : U — C
such that the fibers of f are tangent to the distribution H.

Definition 5.23. Let w be a closed regular one-form on X which does not vanish at any point p € X. We
say that two points z,y € X are w-equivalent if there exists a sequence

TO =Ty L1ye. Ty =Y
such that for every i, z; and x;41 lie in a analytic open set U; equipped with an analytic submersion

tangent to the distribution H(w) and such that f;(x;) = fi(z;+1). An w-leaf is an equivalence class of this
equivalence relation.
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Corollary 5.24. Let w be a closed regular one-form on X which does not vanish at any point p € X. The

partition
X = |_| L.

acA
into w-leaves has the property that for every morphism of irreducible algebraic varieties ¢ : Y — X

*w =0 iff (Y) C Ly for some a € A
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