
LECTURE 5. DIFFERENTIAL FORMS

RÉMI JAOUI

5.1. Definition. Let K/k be a field extension of characteristic zero and let M be a K-vector space. A
k-derivation on K with values in M is an additive morphism

dM : (K,+) → (M,+)

satisfying
• (the Leibniz rule) dM (x · y) = dM (x) · y + x · dM (y) for all x, y ∈ K
• (k-linearity) dM (x) = 0 for all x ∈ k.

Notice that using the Leibniz rule, the second property is indeed equivalent to k-linearity of dM when K are
M are both equipped with their natural structure of k-vector space.

Lemma 5.1. Let K/k be a field extension. There exists a (unique) pair (Ω1(K/k), d) satisfying
(∗) Ω1(K/k) is a K-vector space and d is a k-derivation on K with values in Ω1(K/k)

satisfying the following universal property: for every pair (M,dM ) satisfying (∗), there exists a unique mor-
phism of K-vector spaces Ω1(K/k) → M such that the following diagram commutes:

K
d //

dM

��

Ω1(K/k)

∃!
zz

M

The pair (Ω1(K/k), d) is called the module of one-forms on K/k or the module of k-differentials on K.

Proof. Consider E = SpanK{δx | x ∈ K} the K-vector space whose basis is given by symbols of the form
δx for x ∈ K and R the sub-vector space of E generated by all the elements of E of the form

δ(x+ y)− δx− δy, δ(xy)− xδy − yδx and δc

where x, y ranges over all the elements of K and c ranges over all the elements of k. We define

Ω1(K/k) = E/R and d : x ∈ K 7→ x = δx ∈ Ω1(K/k).

Certainly, (Ω1(K/k), d) satisfies (∗). Now consider (M,dM ) another pair satisfying (∗). The function δx 7→
dMx extends uniquely to a morphism of K-vector spaces ϕ : E → M . Since M satisfies (∗), we have
ϕ(R) ⊂ Ker(ϕ) so that ϕ factors through

ϕ : E/R = Ω1(K/k) → M.

By construction, for every x ∈ K,
ϕ(δx) = ϕ(δx) = dMx

which shows that the diagram in the lemma commutes. Uniqueness follows from the fact that Ω1(K/k) is
generated by the dx with x ∈ K (exercise). □

The Leibniz rule together with additivity are sufficient properties to ensure that the differential calculus
happens “as intended”. For example,

Exercise 5.2. Let K/k be an extension of differential fields, P (X1, . . . , Xn) ∈ k[X1, . . . , Xn] and z1, . . . , zn ∈
K. Then

(1) d(P (z1, . . . , zn)) =

n∑
i=1

∂P

∂Xi
(z1, . . . , zn) · dzi

1
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Lemma 5.3. Let K/k be an extension of differential fields and denote by ∂ the derivation on K. There is
a unique additive map L∂ : Ω1(K/k) → Ω1(K/k) satisfying:

• the Leibniz rule: for all a ∈ K and all ω ∈ Ω1(K/k)

L∂(a · ω) = ∂(a) · ω + a · L∂(ω).

• the chain rule: d ◦ ∂ = L∂ ◦ d.

Proof. The uniqueness part is clear since the one-forms of the form dx and x ∈ K generate Ω1(K/k). Indeed,
if ω =

∑n
i=1 λi · dxi then

L∂(ω) =

n∑
i=1

L∂(λi · dxi) =

n∑
i=1

(
∂(λi) · dxi + λi · d(∂(xi))

)
.

To show existence, recall the construction of Ω1(K/k) = E/R from Lemma 5.1 and consider the map defined
by the previous formula

L∂ :

n∑
i=1

λi · δxi 7→
n∑

i=1

(
∂(λi) · δxi + λi · δ(∂(xi))

)
which is a additive map from E to E. To show that it descends to Ω1(K/k), we need to show that Lδ(R) ⊂ R.
Consider x, y ∈ K

L∂(δ(xy)− xδy − yδx) = δ(∂(xy))− ∂(x)δ(y)− yδ(∂(x))− ∂(y)δ(x)− xδ(∂(y))

=
(
δ(x∂(y) + y∂(x))− δ(x∂(y))− δ(y∂(x))

)
+

(
δ(x∂(y))− xδ(∂(y))− ∂(x)δ(y)

)
+

(
δ(y∂(x))− yδ(∂(x))− ∂(y)δ(x)

)
∈ R

as it is the sum of three elements from R. The other generators of R satisfy (easier) identities (exercise). It
follows that L∂ factors through an additive map L∂ : E/R → E/R satisfying the required properties. □

Definition 5.4. Let K/k be an extension of differential fields. The additive map

L∂ : Ω1(K/k) → Ω1(K/k)

given by Lemma 5.3 is called the Lie-derivative of the derivation ∂.

5.2. Linear independence of one-forms.

Theorem 5.5. Let K/k be an extension of fields of characteristic zero and (zα | α ∈ A) a collection of
elements from K. Then

(zα | α ∈ A) is a transcendence basis of K/k ⇔ (dzα | α ∈ A) is a K-linear basis of Ω1(K/k).

In particular, td(K/k) = ldimK(Ω1(K/k)).

Proof. ⇒ Assume that (zα | α ∈ A) is a transcendence basis of K/k. To see that the (dzα | α ∈ A) generates
Ω1(K/k), it is enough to see that its K-linear span contains all the elements of the form dx for x ∈ K. By
assumption and characteristic zero, any such element satisfies a polynomial relation of the form

P (x, zα) = 0 and
∂P

∂X0
(x, zα) ̸= 0 where P ∈ k[X0, . . . , Xn] and zα = zα1

, . . . , zαn

Equation (1) implies that

0 = dP (x, zα) =
∂P

∂X0
(x, zα)dx+

n∑
i=1

∂P

∂Xi
(x, zα)dzαi

which shows that dx is in the K-linear span of the (dzα | α ∈ A). It remains to show that the (dzα | α ∈ A)
are K-linearly independent in Ω1(K/k).

Claim. For every α ∈ K, there is a (unique) derivation ∂α ∈ Der(K/k) on K trivial on k such that

∂α(α) = 0 and ∂α(β) = 0 for every β ̸= α ∈ A
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Proof of the claim. Decompose K/k as

k ⊂ L = k(zα | α ∈ A) ⊂ K

The existence and uniqueness of ∂α as a derivation of Der(L/k) follow from the presentation of L/k as a
purely transcendental extension. The claim follows from the fact that any derivation on L extends uniquely
to K since K/L is an algebraic extension. □

Now consider a (finite) K-linear relation among the dzα given as∑
α∈A

λα · dzα = 0 where λα ∈ K all but finitely many are zero

and denote by ∂α the derivation associated to zα given by the previous claim. By the universal property of
Lemma 5.1, we can find a K-linear form

ϕα : Ω1(K/k) → K

with the property that ϕα(dz) = ∂α(z) for all z ∈ K. It follows that for all β ∈ A,

0 = ϕβ(
∑
α∈A

λα · dzα) =
∑
α∈A

λα · ϕβ(dzα) = λβ .

Hence, all the coefficients in the linear combination are trivial. We have therefore shown that the (dzα | α ∈
A) are K-linearly independent and hence form a K-basis of Ω1(K/k).

⇐. For the converse, assume first for the sake of contradiction that the zα are not algebraically independent
over k. We can therefore find an algebraic relation of the form

P (zβ , zα) = 0 and
∂P

∂X0
(zβ , zα) ̸= 0 where P ∈ k[X0, . . . , Xn] and zα = zα1

, . . . , zαn

and the αi are distinct from β. Using Equation 1, we obtain as previously

0 = dP (zβ , zα) =
∂P

∂X0
(zβ , zα)dzβ +

n∑
i=1

∂P

∂Xi
(zβ , zα)dzαi

which implies that ∂P
∂X0

(zβ , zα) = 0, a contradiction. We have therefore shown that the zα are algebraically
independent over k. To show that they form a transcendence basis of K/k, consider the decomposition

k ⊂ L = k(zα | α ∈ A) ⊂ K

and assume for the sake of a contradiction that K/L is not an algebraic extension. We can therefore find a
derivation ∂ on K which is trivial on L but not on K; say ∂(x) ̸= 0 for some element x ∈ K. On the one
hand, we can write

dx =
∑
α∈A

λα · dzα

where the right hand side is a finite sum. On the other, we have a K-linear form ϕ : Ω1(K/k) → K such
that ϕ(dz) = ∂(z) for all z ∈ K by the universal property of Lemma 5.1. We conclude that

0 ̸= ∂(x) = ϕ(dx) =
∑
α∈A

λα · ϕ(dzα) = 0

which is a contradiction. This finishes the proof of the theorem. □

5.3. Duality between one-forms and derivations.

Corollary 5.6 (Second presentation of Ω1(K/k)). Assume that K/k is an extension of finite transcendence
degree then

Ω1(K/k) = Der(K/k)∗ and d : x 7→ (∂ 7→ ∂(x)).
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Proof. The map d is well-defined since the evaluation of a derivation at a point is K-linear with respect to
the derivation. Furthermore, k-linearly of d is obvious since if x ∈ k then ∂(x) = 0 for all x ∈ k. Finally, for
x, y ∈ K and ∂ ∈ Der(K/k)

d(xy)(∂) = ∂(xy) = ∂(x)y + x∂(y) = (ydx+ xdy)(∂)

and the Leibniz rule follows. It follows by the universal property that

ϕ : Ω1(K/k) → Der(K/k)∗

sending the differential d on Ω1(K/k) to the newly defined d on Der(K/k)∗. Pick z1, . . . , zn a transcendence
basis of K/k. By Theorem 5.5,

Ω1(K/k) = Kdz1 ⊕ . . .⊕Kdzn.

Using the claim of the previous theorem, we also obtain n derivations ∂1, . . . , ∂n on K such that ∂i(zj) = 0
if i ̸= j and is equal to 1 if i = j. An easy exercise shows that

Der(K/k) = K∂1 ⊕ . . .⊕K∂n.

Finally, since dzi(∂j) = ∂j(zi) =

{
0 if i ̸= j

1 if i = j
, the morphism ϕ sends the basis defined dzi to the dual of

the basis defined by ∂i. It follows that ϕ is an isomorphism. □

Definition 5.7. Let K/k be a finitely generated extension of fields and r ≥ 1. A two-form ω on K/k is a
K-bilinear map

ω : Der(K/k)×Der(K/k) → K

which is alternating in the sense that for every ∂1, ∂2 ∈ Der(K/k), ω(∂1, ∂2) = −ω(∂2, ∂1).

We denote by Ω2(K/k) the K-vector space of 2 forms of dimension
(
n
2

)
. It is well-known (see any reference

in linear algebra) that we have (anti commutative) product denoted

∧ : Ω1(K/k)× Ω1(K/k) → Ω2(K/k)

given by the formula

(ω1 ∧ ω2)(∂1, ∂2) = ω1(∂1) · ω2(∂2)− ω1(∂2) · ω2(∂1).

Lemma 5.8. Let K/k be a finitely generated extension of fields and ω ∈ Ω1(K/k). Then the map

dω : (∂1, ∂2) 7→ ∂1(ω(∂2))− ∂2(ω(∂1))− ω([∂1, ∂2])

where [∂1, ∂2] = ∂1 ◦ ∂2 − ∂2 ◦ ∂1 is the Lie bracket of derivations in Der(K/k).

Proof. The definition of dω shows that dω is alternating. To show that it is bilinear, it is therefore enough
to show that it is linear in the first variable. Consider f ∈ K and ∂1, ∂2 ∈ Der(K/k).

dω(f∂1, ∂2) = f∂1(ω(∂2))− ∂2(ω(f∂1))− ω([f∂1, ∂2])

= f∂1(ω(∂2))− ∂2(fω(∂1))− ω(f [∂1, ∂2]− ∂2(f)∂1)

= f∂1(ω(∂2))−
(
f∂2(ω(∂1)) + ∂2(f)ω(∂1)

)
−
(
fω(∂1, ∂2))− ∂2(f)ω(∂1)

)
= f∂1(ω(∂2))− f∂2(ω(∂1))− fω(∂1, ∂2)) = fdω(∂1, ∂2)

The proof of additivity is easier and left as an exercise. □

Definition 5.9. We say that a one-form ω ∈ Ω1(K/k) is closed if the two-form dω ∈ Ω2(K/k) given by
Lemma 5.8 is equal to zero.
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5.4. An exact sequence. Let K/k be a field extension of characteristic zero and consider L an intermediate
subfield. We construct two morphisms of K-vector spaces.

(1) Viewing Ω1(K/k) as an L-vector space, we obtain a morphism of L-vector spaces

iL : Ω1(L/k) → Ω1(K/k)

obtained by applying Lemma 5.1 to d|L : L → Ω1(K/k).
The usual properties of the tensor product gives an identification

HomL−vect(Ω
1(L/k),Ω1(K/k)) ≃ HomK−vect(Ω

1(L/k)⊗L K,Ω1(K/k))

which is the (functorial) adjunction between extension and restriction of scalars in commutative algebra. So
that the morphism il corresponds to a morphism of K-vector spaces:

jL : Ω1(L/k)⊗L K → Ω1(K/k)

(2) Applying Lemma 5.1 to the extension K/k and the morphism d = dK/L : K → Ω1(K/L), we obtain
a morphism of K-vector spaces

sL : Ω1(K/k) → Ω1(K/L).

Corollary 5.10. With the notation above, the sequence

0 → Ω1(L/k)⊗L K
jL→ Ω1(K/k)

sL→ Ω1(L/K) → 0

is a short exact sequence of K-vector spaces

Proof. To see that jL is injective, it is enough to see that iL is injective. This follows from Theorem 5.5 and
the fact that a transcendence basis of L/k can be completed into a transcendence basis of K/k. Similarly
any transcendence basis of K/L can be completed into a transcendence basis of K/k so that sL is surjective
by Theorem 5.5. Finally, the property that sL ◦ jL = 0 follows from the fact

sL(dK/kf) = dL/kf = 0 for any f ∈ L

and that Ω1(L/k)⊗L K is generated as a K-vector space by one-forms of this form. □

5.5. Geometric interpretation. Let k be an algebraically closed field. We start by recalling some basic
facts about algebraic geometry over an algebraically closed field k and refer to [? ] for more details. An
affine algebraic variety X is a Zariski-closed set of kn for some n. In other words, an affine variety is defined
by a (positive) system of the form 

P1(x1, . . . , xn) = 0
...

Pk(x1, . . . , xn) = 0

.

The Zariski-topology on kn induces by restriction a noetherian topology on X also called the Zariski-topology.
Hence every affine algebraic variety X is equipped with the structure of a quasi-compact topological space.
We say that X is an irreducible variety if it is irreducible for this noetherian topology.

Definition 5.11. Let U be an open set of X. We say that a function f : U → k is regular around some
point x ∈ U if there exists a neighborhood V of x in U such that

(2) f|U (x1, . . . , xn) =
f(x1, . . . , xn)

g(x1, . . . , xn)

where f, g ∈ k[x1, . . . , xn] and g does not vanish on V . We say that f is a regular function on U and write
f ∈ OX(U) if f is regular around every point x ∈ U

Clearly, the regular functions on any given open set U of X form a k-algebra and if V ⊂ U then we obtain
by restriction a morphism of rings OX(U) → OX(V ). It follows that

{OX(U) | U ⊂ X}
is an inductive system of rings.

Definition 5.12. Let X be an irreducible affine algebraic variety. The inductive limit k(X) = limU⊂XOX(U)
of this system is called the field of rational functions on X.
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In other words, a rational function on X is a regular function f ∈ OX(U) on some nonempty open set U of
X and two rational functions f, g are equal if they agree on some non empty open subset of X.

Lemma 5.13. Let X be an irreducible affine variety.
(i) The fraction field k(X)/k of X is a finitely generated field extension of k and every finitely generated

field extension of k is of this form.
(ii) For every x ∈ X, the ring

OX,x := {f ∈ k(X) | f is a regular function around x } ⊂ k(X)

is a local ring and the unique maximal mx is formed by the functions f ∈ OX,x satisfying f(x) = 0.

Proof. (i). Let f ̸= 0 be a rational function and let U be an open set such that

f|U (x1, . . . , xn) =
P (x1, . . . , xn)

Q(x1, . . . , xn)

as in Equation (2). Denote by V the intersection of U with U(P ) = {x ∈ X | P (x) ̸= 0} which is open and
non empty since f ̸= 0. Set

g =
Q(x1, . . . , xn)

P (x1, . . . , xn)

which is a regular function on V by definition. Clearly f · g = 1 in OX(V ) so that f · g = 1 ∈ k(X). It
follows that k(X) is a field. Now X ⊂ kn, the restrictions to X of the coordinates functions x1, . . . , xn on kn

are regular functions on X and Equation (2) implies that they generate k(X)/k. The converse of (i) follows
from the (algebraic) Nullstellensatz (exercise).

(ii) Set mx = {f ∈ OX,x | f(x) = 0}. The fact that OX,x is a local ring with mx as the unique maximal
ideal follows from the fact that

f ∈ OX,x is invertible iff f /∈ mx.

The proof of this easy fact is left as an exercise. □

Our goal is to give a geometric interpretation for

Der(k(X)/k) and Ω1(k(X)/k).

Definition 5.14. Let X be an irreducible affine algebraic variety and x ∈ X. We say that a derivation
∂ ∈ Der(k(X)/k) is regular at x if ∂(OX,x) ⊂ OX,x. We say that a one-form ω ∈ Ω1(k(X)/k) is regular at
x if for every derivation ∂ ∈ Der(k(X)/k) regular at x, the function ω(∂) ∈ k(X) is regular at x.

It follows immediately from the definitions that if ∂ is regular at any point x ∈ U then

∂(OX(U)) ⊂ OX(U)

and similarly that if a one-form ω is regular at every point x ∈ U and ∂ is a derivation regular on U
then ω(∂) is a regular function on U . For this reason we denote by Der(OX(U)/k) and Ω1(OX(U)/k) the
OX(U)-modules of regular derivations and of regular one-forms on U .

Example 5.15. Set X = kn so that k(X) = k(x1, . . . , xn). If x0 ∈ X then

OX,x0 = {P/Q | P,Q ∈ k[x1, . . . , xn] and Q(x0) ̸= 0}
It follows easily that the partial derivatives

∂i : f 7→ ∂f

∂xi

are regular derivations at any point x0 ∈ X. Since they form a k(X)-basis of Der(k(X)/k), any derivation
∂ can be written as

∂ =

n∑
i=1

fi · ∂i

and ∂ is regular at x if and only if for every i, the function fi is regular at x. Similarly, the dual basis of
Ω1(k(X)/k) is given by the one-forms dxi and any one-form can be written as

ω =

n∑
i=1

gi · dxi
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which is regular at x iff all the gi are regular at x.

Definition 5.16. Let X be a Zariski-closed subset of kn and defined by the vanishing of f1, . . . , fp ∈
k[x1, . . . , xn]. The tangent space TX of X is the Zariski-closed subset of k2n given by the vanishing of

f1(x1, . . . , xn), . . . , fs(x1, . . . , xn), L1(x1, . . . , xn, ϵ1, . . . , ϵn), . . . , Ls(x1, . . . , xn, ϵ1, . . . , ϵn)

where Li =
∑n

j=1
∂fi
∂xj

· ϵj ∈ k[x1, . . . , xn, ϵ1, . . . , ϵn].

Note the projection π : k2n → kn restricts to a regular map

πX : TX → X

and for any point p ∈ X, the fiber denoted TXp of πX over p is called the tangent space of X at p. Since the
Li are linear in the coordinates ϵ1, . . . , ϵp, TXp is always a linear subspace of kn given by the vanishing of

Li(p, ϵ1, . . . , ϵn) =

n∑
j=1

∂fi
∂xj

(p) · ϵj

In particular, πX is always surjective. We say that X is a smooth algebraic variety if the dimension of TXp

does not depend on p.

Definition 5.17. Let X be an irreducible algebraic variety and let U be an open set. An algebraic vector
field on U is a regular map

U → TX ⊂ k2n

which is a section of πX . In other words, an algebraic vector field is a tuple s1, . . . , sn ∈ OX(U) such that
the function

v(p) = (p, s1(p), . . . , sn(p))

takes values in TX. We denote by Ξ(U) the space of regular algebraic vector fields on X.

Construction 5.18. Let X be a Zariski-closed subset of kn and let U be an open set of X. The coordinates
functions x1, . . . , xn on kn define by restrictions regular functions denoted x1, . . . , xn on X and consider

Der(OX(U)/k) → OX(U)× . . .×OX(U)

given by ∂ 7→ v∂ = (∂(x1), . . . , ∂(xn)).

Proposition 5.19. With the notation above, the map ∂ 7→ v∂ takes values in Ξ(U) and moreover:
(i) it is an isomorphism of OX(U)-modules

Der(OX(U)/k) ≃ Ξ(U)

(ii) if I ⊂ OX(U) is an ideal and Z is the corresponding Zariski-closed subset of U then I is a differential
ideal of (OX(U), ∂) for ∂ if and only if v∂|Z : Z → TX takes values in TZ.

Proof. Clearly vδ is values in Ξ(U) since in OX(U), we have for i = 1, . . . , s

fi(x1, . . . , xs) = 0

which gives after derivation that
n∑

j=1

∂fi
∂xj

· ∂(xj) = 0

for i = 1, . . . , s. It follows that the regular function

p 7→ (p, v1(p), . . . , vn(p))

takes values in TX. To check (i), first note that x1, . . . , xn generate the function field of OX(U) and hence
that the morphism is injective. It remains to show surjectivity. For that purpose, consider an open set V of
kn such that V ∩X = U so that the restriction morphism

O(V ) → OX(U)

is surjective and consider v = (s1, . . . , sn) an algebraic vector field on X. and pick lifts t1, . . . , tn of s1, . . . , sn
to O(V ). By definition,

k[x1, . . . , xn] ⊂ O(V ) ⊂ k(x1, . . . , xn)
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and hence there is a unique derivation
∂0 : O(V ) → O(V )

such that ∂0(xi) = ti and which is trivial on k. To show that it descends to a derivation on OX(U), we show
that the ideal (f1, . . . , fs) is a differential ideal. indeed, if f = fi then

∂0(f) =

n∑
i=1

∂f

∂xi
· ti =

n∑
i=1

∂f

∂xi
· si

which is equal to zero in OX(U) since v takes values in TX. (ii) is left as an exercise using (i). □

Proposition 5.20. Let X be an irreducible Zariski-closed subset of kn and let U be a smooth open set.
Denote by TU the inverse image of U under πX and set

F1(U) := {f ∈ OTX(TU) | for every p ∈ U, f|TpU : TpU → k is linear }
Then the map

ω̂ 7→ (∂ 7→ ω̂ ◦ v∂ ∈ OX(U))

defines an isomorphism of OX(U)-modules

F1(U) ≃ Hom(Der(OX(U)/k)),OX(U)) = Ω1(OX(U)/k).

Proof. Clearly, ω̂ 7→ ω is a morphism of OX(U)-module. To show that it is an isomorphism, we will build
the inverse. Let ω ∈ Ω1(OX(U)/k). Since U is smooth, through any point q ∈ TU we can find a vector field
v in a neighborhood of p = πU (q) such that v(p) = q. We set

ω̂(q) = ω(∂v)(p)

where ∂v is the derivation associated to the vector field v. Note that if w is another vector field satisfying
w(p) = q then

(w − v)(p) = 0 ⇒ (δv − δw)(mp) ⊂ mp ⇒ ω(δv − δw)(p) = 0

using (ii) of the previous proposition and the fact that ω is regular. It follows that the function ω̂ is well-
defined. Standard results from algebraic geometry ensures that this is a regular function. This completes
the proof of the proposition. □

Definition 5.21. Let ϕ : X → Y be a morphism of algebraic (or analytic) varieties and denote by

Tϕ = (ϕ, dϕ) : TX → TY.

If ω is a regular one-form on Y , the one-form ϕ∗ω on X defined by

ϕ̂∗ω = ω̂ ◦ Tϕ
is called the pullback of ω by ϕ.

5.6. Frobenius integrability theorem. We now assume that k = C and that X is a smooth affine algebraic
variety. We say that a regular one-form on X vanishes at p if the linear form ω̂(p) : TpX → k is zero.

Theorem 5.22 (Frobenius integrability theorem for closed forms). Let ω be a closed regular one-form on
X which does not vanish at any point p ∈ X and consider the distribution of hyperplanes given by

H : p 7→ Ker(ω(p)) ⊂ TXp

Given any point p0 ∈ X, there exists an analytic neighborhood U of p0 and an analytic submersion f : U → C
such that the fibers of f are tangent to the distribution H.

Definition 5.23. Let ω be a closed regular one-form on X which does not vanish at any point p ∈ X. We
say that two points x, y ∈ X are ω-equivalent if there exists a sequence

x0 = x, x1, . . . , xn = y

such that for every i, xi and xi+1 lie in a analytic open set Ui equipped with an analytic submersion

fi : U → C
tangent to the distribution H(ω) and such that fi(xi) = fi(xi+1). An ω-leaf is an equivalence class of this
equivalence relation.
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Corollary 5.24. Let ω be a closed regular one-form on X which does not vanish at any point p ∈ X. The
partition

X =
⊔
α∈A

Lα

into ω-leaves has the property that for every morphism of irreducible algebraic varieties ϕ : Y → X

ϕ∗ω = 0 iff ϕ(Y ) ⊂ Lα for some α ∈ A
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