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ON LIOUVILLE’S THEORY OF ELEMENTARY
FUNCTIONS

MAXWELL ROSENLICHT

Some recent results of Ax have made possible greatly
simplified demonstrations of Liouville’s basic results on the
elementary integration of functions and the elementary solu-
tion of transcendental eguations, together with their generali-
zations in various directions. An essentially self-contained
exposition of this material is given here.

1. For the convenience of the reader, we provide in this section
a succinct and somewhat simplified treatment of the necessary parts
of Ax’s paper [1].

Let k— K be a fixed homomorphism of commutative rings.
(Thus K is a k-algebra. In all our applications K will be a field and
k a subfield, but we may as well begin with the extra generality.)
If M is a K-module, by a k-derivation of K into M is meant a k-
linear map D: K — M such that D(xy) = x(Dy) + y(Dx) for all z, y € K.
In such a situation we have Dx" = nx" 'Dx for all x€ K and all
positive integers n; taking x =1, n = 2, we get D1 = 0, and hence
D vanishes on the image of & in K. The k-derivations of K into M
form a K-submodule Der, (K, M) of Hom, (K, M). A derivation on
(or of) the ring K is simply a Z-derivation of K into K (that is,
we take k= Z, K = M). A derivation on an integral domain extends
to a unique derivation on its field of quotients, by means of the
equation D(x/y) = (yDx — xDy)/y*.

PropoOSITION 1. Let k— K be a homomorphism of commutative
rings. Then there exists a K-module Q2x,. and a k-derivation d of
K into 2, such that for any k-derivation D of K inmto a K-module
M there exists a unique K-homomorphism Qg — M which composed
with d gives D.

This well-known result is most simply proved by trying for 24,
the K-module @/¥, where @ is the free K-module generated by the
symbols {dx},.x and ¥ the K-submodule of @ generated by all
o(x + y) — 0x — 0y and all é(xy) — oy — yox for zx, y € K, and all iz
for x in the image of & in K, with d the obvious composition with
0, and noting that this works.

The pair (24, d), clearly unique to within isomorphism, is called
the module of k-differentials of K. Each element of 24, can be
written as a finite sum 3, x,dy;, with x, y,€ K. For any K-module
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M, there is a natural K-module isomorphism between Der, (K, M)
and Hompg (2., M).

PROPOSITION 2. Let ¢: k— K be a homomorphism of commutative
rings, D a derivation on K such that there exists @ map Dy k—k
such that ¢D, = Dt. Then there exists a unique map D' Qg — Qg
such that for all w,neQly, and all feK we have DY{w + 7)) =
Do + D, D\(fw) = (Df)w + f(D'w), and D(df) = d(Df).

Since each element of 24, is of the form X x.dy;, with z, y;¢c K,
the uniqueness of D' is clear. To prove the existence of D' we first
define an additive map D’ on the free K-module @ of the proof of
Proposition 1 by setting D'(3x.0¥,) = 2 .((Dx,)0y; + x, 6(Dy,)) and then
note that D'V c ¥, so that D’ defines an induced map D' on Q/¥,
which is isomorphic to 24,,.. The verification that D' has the desired
properties is straightforward.

From now on K will be a field, usually of characteristic zero,
k a subfield of K.

LEMMA. Let k be a field, K a separable algebraic extension field

of k. Then any derivation of k has a unique extension to a deriva-
tion of K.

This is another standard result. A proof may be found in [2,
§3], for example.

PrOPOSITION 3. Let kC K be fields, {®.}ecs elements of K that
are algebraically independent over k and such that K is separably
algebraic over k({%u}acs). Then {dx.}qcs 18 @ K-basis for L.

Each element of K satisfies a separable polynomial equation with
coefficients in the ring k[{z.}...], and by applying d to these equations
we see that dKcJ,. ,Kdx,. In other words, {dx,}.., spans 2¢,,. To
show that {dz.}... are linearly independent over K, we use the
existence, for each B 4, of a derivation 6/ox; of K which annuls
k and each z,, « = B, and takes on the value 1 at x;; the derivation
0/0x; is first constructed for the ring k[{®.}...], then extended to its
field of quotients k({x,}.c.), and then to K, using the lemma.

COROLLARY. If kcC KC L are fields of characteristic zero, then
the natural homomorphism 2k, — 2., is injective.

The “natural homomorphism” is of course that of Proposition 1.
Injectivity results from Proposition 3, noting that any transcendence
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base for K/k is part of a transcendence base for L/k.

PROPOSITION 4. Let kC K be fields of characteristic zero, let
Uy * ooy Uy V be elements of K, with u,, - -+, u, nonzero, and let e, -+, ¢,
be elements of k that are linearly independent over the mnatural
numbers Q. Then the element

du,,

01%—]’"""‘0” +d?]

1 n

of Qx; s zero tf and only if each wu, «-+, u,, v 1s algebraic over k.

The element dv of Q.. is zero if and only if v is algebraic
over k, by Proposition 8. The Corollary implies that the element
dv of Q4,, is zero if and only if v is algebraic over k. It remains
only to prove that if u, is not algebraic over k then ¢, duw,/u, + +-- +
¢, du,/u, + dv is nonzero. For this we may replace K, if necessary,
by k(u, ---, u,, v), to reduce ourselves to the case where K is a

finite extension of k. Let x, ---, 2, be a transcendence base for
K/k, with x, = w,. Considering the natural homomorphism 2, —
Q& /ktzg--rs, and replacing & by k(x,, ---, x,) if necessary, we see that

we may suppose K algebraic over k(u,). Enlarge K, as we may if
necessary, so that K is normal over k(w). If cdu,/u, + --- +
C,dU, [, + dv = 0 then for any o € Aut (K/k(u,)) we have c,dow,/ou, +
<o o+ e dou,/ou, + dov = 0, and adding up over all ¢ e Aut (K/k(u,))
produces an equation similar to our original one, but with ¢, replaced

by [K: k(w)le,, with the same ¢, ---, ¢, %, and with u, ---, u,, v
replaced by elements of #&(u,). We therefore have to show that
e, du,/u, + «++ + ¢, du,/u, + dv is nonzero in the special case where

Ugy ***y Uy, VE K = k(u,), with u, transcendental over k. This fact
follows immediately upon expressing each u#; as a power product of
monic irreducible elements of k[u,] and an element of ¥ and v in
its partial fraction form relative to k[u,], for we then get a non-
cancelling partial fraction term dw,/u,.

PRrROPOSITION 5. Let bk K be fields of characteristic zero, D a
derivation of K such that Dk Ck, C the field {xck: Dx = 0}, and
u and t elements of K that are algebraically dependent over C.
Then in 2, we have D'(udt) = d(uDt).

For D'(udt) = (Du)dt + udD¢, while d(wDt) = (Dt)du + udDt, so
that we have to show that (Du)dt = (Dt)du. Corresponding to parts
of the inclusions CckcCk(u,t)c K we have the homomorphisms
L= 2xs, and Q20,0 — 2«1y S0 that we can reduce ourselves first
to the case k = C and next to the case K = k(u, t) = C(u, t). In this
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case D is a multiple of the derivation 9/0t of C(u, t) and our proof
reduces to the known equality du = (du/ot)dt.

PROPOSITION 6. Let k C K be fields, 4 a set of derivations of K
such that Dk Ck for each De 4, and let C be the field MNpes ker D.
Suppose @, -+, ®, € 2¢, are annulled by each D', for Ded. Then
if @, -+, 0, are linearly dependent over K they are linearly
dependent over C.

For suppose that there are a, ---, a, € K, not all zero, such that
oo, + - + a,», = 0. Choose a,, ---, a, so that the number of non-
zero a,’s is minimal, and that one of them, say a, is 1. For each
Ded we get 0 = D' (g0, + -+ + a,0,) = (Da,)w, + -+ + (Da,)w, =
De)w, + «++ + (Da,)w,. Since the number of nonzero a,/s was
minimal and a, = 1, we get Da, = --- = Da, = 0. Hence each a, cC.

2. We come now to the applications of the previous material
to differential algebra. The reader interested in the earlier litera-
ture should consult the bibliographies of the references listed at the
end.

In what follows, by a differential field will be meant a field £,
together with an indexed family {D,};.; of derivations of k. For
simplicity, one speaks of ‘“the differential field %7, instead of “the
differential field {&, {(3, D,)};c;f”. The constants of the differential
field & are M);.; ker D,, a subfield of k. A differential extension field
of k is an extension field K of k together with a family of deriva-
tions {Dj},.; of K indexed by the same set such that the restriction
of each D] to k is D,.

THEOREM 1. Let k be a differential field of characteristic zero,
K o differential extension field of k with the same constants C.
For each 1 =1, ---,nand j=1, -+, let ¢,;€C and let v, be an
element of K, u; a nonzero element of K. Suppose that for each
1=1, -+, n and each given derivation D of K we have

+ Dv,ek.

Z Cij
j=1

Du,-
U,

J

Then either deg.tr.k(u, «--, U, v, -+, v,)/k =n or the n elements
of Qx; giwven by >V c du;/u; + dv, 1 =1, ---n, are linearly de-
pendent over C.

Working in 24, and using Propositions 2 an 5, for each given
derivation D of K and each 7 =1, ---, n we obtain
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du

u,-j + dv,.> = d(; c“-Du

J

Dl(z”; 6 iy Dvi> =0.

=1

If the differentials >, ¢;;duj/u; +dv,, © =1, .-+, m, of 2, are
linearly independent over C, then by Proposition 6 they are also
linearly independent over K. Hence the » differentials >}, ¢,;du;/u;+
dv; of Quuyruyp-opn are linearly independent over K(w,, ---, u,,
Vit e, V). SInce Dy, eruy vy 0 1S @ Vector space over k(w, .-, u,
v, +++, v,) of dimension deg. tr.k(u, .-, u,, v, -+, v,)/k, this latter
number must be at least =.

COROLLARY. Let k be a differential field of characteristic zero,
K o differential extenston field of k with the same constants.
Suppose that w, +++, U,, v, +++, v, € K, with u, ---, u, nonzero, and
that for each © =1, ---, n and each giver derivation D of K we have
Duju, + Dv,ek. Then either deg.tr.k(u, -+, Uy, ¥y, *++, V) =1
or some linear combination of v, -+, v, with constant coefficients
that are mot all zero and some power product of u, «--, w, with
exponents not all zero are algebraic over k.

This is a slight generalization of the main result Theorem 4 of [1].
To prove it, note that if the transcendence degree in question is not
at least = then there exist v, ---,7,€C, not all zero, such that

78y P oy e g vde, = 0,
U, n
choose a basis ¢, - -+, ¢, for the vector space Qv, + --- + Q7, so that

each 7, can be written as 7, = 3/, v,¢c; with each y,; € Z, hence
(using “logarithmic derivatives”) rewrite the displayed equation as

3o ) g, e 4 7w,) = 0,
j=1 UyLie o eqfpni
and quote Proposition 4.

The next theorem generalizes the main result of [3], to which
paper we refer for its applications to the question of elementary
solutions of transcendental equations. The lemma is an immediate
consequence of Theorem 1.

LEMMA. Let k be a differential field of characteristic zero, K a
differential extension field of k having the same constants and such
that deg. tr. K/k = 1. Then any two k-differentials of K which can
be written in the form cduu, + -+ + ¢, du,/u, + dv, where
Ciy "%y Cpy Uyy ***, U, VEEK, ¢, -+, ¢, Deing constants, tn such a way
that for each given derivation D of K we have ¢ Duju, + -+ +
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c,Du,ju, +~ Dvek, are linearly dependent over the subfield of
constants.

THEOREM 2. Let k be a differential field of characteristic zero,
K o differential extension field of k with the same constants, with
K algebraic over k(t) for some given t€ K. Suppose that ¢, ---, ¢,
are constants of k that are linearly independent over @, that
Uy * v oy U, ¥ are elements of K, with u, -+, w, nonzero, and that
for each given derivation D of K we have >, c,Duju;, + Dvek.
If for each given derivation D of K we have Dtek, then u, ---, U,
are algebraic over k and there exists a constant ¢ of k such that
v — ¢t is algebraic over k. If for each given derivation D of K we
have Dt/tek, then v 1is algebraic over k and there are integers
Yy, Yiy =, Y, With v, # 0, such that each u:°/t*: is algebraic over k.

We may suppose ¢ transcendental over k, so that df #0. In
either of the two cases, each Dick or each Di/t ek, the Lemma is
applicable, and we have ¢, du,/u, + -+ + ¢, du,/u, + dv equal to either
cdt or cdt/t, for some constant ¢ of k. In the former case we have
cdwfu, + «+- + ¢, du,/u, + d(v — ct) = 0, and Proposition 4 tells us
that u, -+, u,, v — ¢t are all algebraic over k. In the latter case
Proposition 4 first implies the linear dependence of ¢, ¢, ---, ¢, over
Q, so that we can write ¢ = (X~ v.c,)/v,, for suitable integers
Yy Yy =+, Y, With y, = 0, and so obtain

PR Gl L L C L 0 S TR e |
u';()/t"l u;’bl)/t“n
A final application of Proposition 4 to this last equation completes
the proof.

If k& is a differential field and z, y €k, with ¥ = 0, and the rela-
tion Dx = Dy/y holds for each given derivation D of k, we call x a
logarithm of y or y an exponential of x. A differential extension
field of k is called an elementary extension of k if it is of the form
k(t, ++-, ty), where for each ¢ =1, ---, N, ¢, is either a logarithm
of an element of k(¢, ---,¢,_), or an exponential of an element of
k(t, -+, t,_,), or is algebraic over k(t, ---,t,_,). In this case note
that each field k(¢,, ---, t,_,) is a differential extension field of k.

The following result generalizes Liouville’s theorem on the
elementary integrability of functions.

THEOREM 3. Let k be a differential field of characteristic zero
and for each given derivation D of k let ap,ck. Then there exists
an elementary differential extension field of k having the same



ON LIOUVILLE’S THEORY OF ELEMENTARY FUNCTIONS 491

constants and containing an element y such that Dy = ap for each
given derivation D if and only if there are constants ¢, ---, ¢, €k
and elements u,, -+, u,, v€k, such that for each given derivation
D we have

*  Du,

az,:Z‘ci + Dv.

k3

First suppose that there is a differential extension field k(¢,, - - -, ty)
of k& having the same constants, with each ¢, a logarithm or an
exponential of an element of k(¢, ---, t,_,), or algebraic over the
latter field, that contains an element % such that Dy = a, for each
given derivation D. We shall prove by induction on N that elements
Ciy ** oy Cpy Uy *++, Uy, ¥ Of k exist as indicated. Since the case N =0
is trivial, we assume that N > 0 and that the result holds for N — 1.
If we apply the N — 1 case to the differential fields k(¢,) C k(¢, -, tx)
we deduce immediately that there are constants ¢, ---, ¢, of k and
elements w,, ---, u,, v of k(t,) such that for each given derivation D
we have a, = >\~, ¢,Du,/u; + Dv. Thus we are reduced to proving
only the rather general statement that if there is an element ¢
in a differential extension field of % having the same constants as k
such that ¢ is a logarithm or an exponential of an element of & or

algebraic over & and if there exist an integer %, constants ¢, ---, ¢,
of k, and elements u,, « - -, %,, v of k(¢) such that ap = >\, ¢,Du;/u;+ Dv
for each given derivation D, then such % and ¢, *--, Coy Uy, =<, Uy, ¥

can be found with the latter all in k. If ¢ is algebraic over k, we
can assume k(f) to be a normal extension of k. Then for each
o€ Aut (k(t)/k) we have ap, = >, ¢, Dou,fou; + Dov and summing
over all ¢ we get [k(t): kla, = D\, ¢,DII ,ou,/Il ,ou; + DX ,0v, with each
element /7,0u; and 3,0v in k. Thus we may assume ¢ transcendental

over k. We claim that we may suppose ¢, --+, ¢, to be linearly
independent over Q. For if, say, ¢, depends linearly on ¢, ---, ¢,_,
we write ¢, = (me, + -+ + m,_C,_,)/m, with m, -+, m,_,, meZ,

m # 0 and we obtain for each given derivation D the equation
ap = D5 (eof/m)D(uruyt)/ururt + Dv, similar to what we had before
but with smaller n. Therefore we may assume that ¢, ---, ¢, are
linearly independent over Q. If ¢ is a logarithm of an element of
k, say Dt = Daja for some ack and each given derivation D, then
it is an immediate consequence of Theorem 2 that wu, ---,u,€k,
while v = ¢t + w, for some constant ¢ and some w €k, so that for
each D we have a, = ¢ Du,ju, + --- + ¢,Du,/u, + cDaja + Dw, a
relation of the type desired, since all the terms here are in k. If ¢
is an exponential of an element of k, say Dt/t = Db for some bek
and each given derivation D, Theorem 2 tells us that v €k and there
are integers v, v, --:,v,, with vy, % 0, such that each wu}/t*ek.
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Thus for each D we have
Duju; = (L/v))Duojwie = (1/vo) D(w:°/t3)[(w:o/t*?) + (v,/v,) D/t .

Noting that v and each wu}%/t* are in &k and that Dt/t = Db, with
bek, we get an expression for each a, of the type desired, with all
terms in k. It therefore remains only to prove the converse of
what we have shown so far, namely that if there exist constants
¢, *++, ¢, in k and elements u, ---, %,, v of & such that for each D
we have a, = >\, ¢,Du;/u, + Dv, then there is an element % in some
elementary extension field of k¥ having the same constants such that
for each D we have Dy = a,. It suffices to prove that for each
%, {Dw,/u;} can Dbe integrated in turn, without introducing new
constants. In other words, it remains to show that if aeck, ¢ = 0,
then there exists a differential extension field k() of %k having the
same constants and such that D¢ = Da/a for each given derivation
D. To do this, take t transcendental over %k and make k(f) a
differential extension field of % by defining, for each given derivation
D of k, Dt = Daja. We are all done, unless it happens that k(t)
has a constant not in k. So suppose that f/g is a constant in k(¢),
with f, ¢ relatively prime elements of %[t], not both in %k, and ¢
monic. For each given derivation D of & we have D(f/g) =0, so
that ¢gDf = fDg. Now Df, Dgeck[t], with degrees respectively <
(degree of f), < (degree of g). Relative primeness implies ¢|Dyg, so
that Dg = 0, hence also Df = 0. Therefore there is a constant in
k[t] that is not in k. Say that b, b, ---,b, ek, » >0, b, = 0, with
D(bt™ + bt + --- +b,) =0 for all D. Then

(Dbt + (nbyDaja + Dbt + +++ =0

for all D. Therefore b, is a constant in & and Da/a = D(—b,/nb,).
In this case o has a logarithm in % itself and we are done.

Added in proof. Another proof of the main part of this theorem
is given in B. F. Caviness and M. Rothstein, “A Liouville theorem
on integration in finite terms for line integrals,” Communications in
Algebra, 3 (1975), 781-795.
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