
LECTURE 2. RITT THEORY

Convention. All differential rings in this section are assumed to contain Q. If R is a differential ring, we
denote by R{X} the differential ring of differential polynomial with one variable and coefficients in R.

• the differential ring R{X} can be defined by the following universal property: whenever R → S
is a morphism of differential rings and s ∈ S, there is a unique morphism of differential rings
ϕ : R{X} → S such that the following diagram commuted

R //

��

R{X}

ϕ(X)=s
||

S

and ϕ(X) = s.
• the differential ring R{X} is constructed as follows: as a ring,

R{X} = R[Xi | i ∈ N]

is the polynomial ring in infinitely many indeterminates. The derivation is the unique derivation
∂ ∈ Der(R{X}) satisfying:

∂|R = ∂R and ∂(Xi) = Xi+1

where ∂R : R → R is the given derivation on R. Because of the definition of the derivation, the
variables Xi can be interpreted as the successive derivatives of the variable X0 = X. To emphasize
this, we will write

X = X0, X
′ = X1, . . . , X

(n) = Xn · · ·
An element f of R{X} is called a differential polynomial of one variable with coefficients in R. The goal of

this section is to describe some basic theory of differential polynomials of one variable, of prime and radical
ideals of R{X}. This is the subject of Ritt-Raudenbush theory.

2.1. Terminology on differential polynomials. Let f ∈ R{X} be a differential polynomial. We define
the order of f is the maximal n = ord(f) such that X(n) appears nontrivially in f . It is convenient to set
ord(f) = −∞ if f ∈ R. Hence, if ord(f) ≥ 0, we can write

(1) f =

d∑
i=0

ai · (X(n))i

where all the ai ∈ R{X} have order < n. If ad ̸= 0, we say moreover that f has degree d and that ad is the
initial of f . The degree of f will be denoted deg(f) and its initial will be denoted if . This information is
organized as follows:

• the pair (ord(f),deg(f)) defines a preorder on the set of differential polynomials

f ≪ g iff ord(f) < ord(g) or ord(f) = ord(g) and deg(f) < deg(g).

• any differential polynomial f ∈ R{X} of order ≥ 0 can be written as

f = if · (X(n))d + f0

where f0 ∈ R[X] f1 ≪ f , n = ord(f), d = deg(f) and if is the initial of f .

Definition 2.1. Assume that ord(f) ≥ 0. The separant of f ∈ R{X} denoted sf ∈ R{X} is the differential
polynomial defined by

sf =
∂f

∂X(n)
.
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2 MODEL THEORY AND DIFFERENTIAL ALGEBRA

More concretely, if f is given as in Equation (1) then its separant sf is given by

(2) sf =

d∑
i=0

iai · (X(n))i−1 =

d−1∑
i=0

(i+ 1)ai+1(X
(n))i.

It follows easily from the previous formula that sf ≪ f.

Lemma 2.2. Assume that n = ord(f) ≥ 0 and let k ≥ 1. Then

f (k) = sfX
(n+k) + fk with ord(fk) < ord(f (k))

Hence, ord(f (k)) = ord(f) + k, deg(f (k)) = 1 and that the initial of f (k) is the separant of f .

Proof. As in Equation (1), we can write f =
∑d

i=0 ai · (X(n))i and using the Leibniz rule, obtain:

f ′ =

d∑
i=0

(
a′i(X

(n))i + i · ai(X(n))i−1X(n+1)
)

By definition d ≥ 1, so that X(n+1) appears non trivially on the right terms of the previous sum but not on
the left terms. Hence, ord(f ′) = n+ 1 and

f ′ =
( d∑

i=0

iai(X
(n))i−1

)
X(n+1) + f1 = sfX

(n+1) + f1

where f1 is a differential polynomial of order < n+1. The rest of the statement is obtained by induction on
k noting that sf = sf ′ by the previous formula. □

2.2. Two division lemmas in R{X}. If f ∈ R{X} is a differential polynomial, we denote by ⟨f⟩ the
differential ideal of R{X} generated by f .

Lemma 2.3. Assume that n = ord(f) ≥ 0. For every g ∈ R{X}, there exists m ≥ 0 and r ∈ R{X} with
ord(r) ≤ ord(f) such that

smf · g = r mod⟨f⟩.

Proof. We may assume that ord(g) > n = ord(f). Write

g = ig · (X(n+k))d + g0 with g0 ≪ g.

which after multiplication by sdf can be written as

sdf · g = ig · (sf ·X(n+k))d + sdf · g0
By Lemma 2.2, we can write

f (k) = sfX
(n+k) + fk with fk ≪ f

and combining the two, we obtain

sdf · g = ig · (f (k) − fk)
d + sdf · g0 = (−1)dfd

k · ig + sdf · g0 mod⟨f⟩.

After setting g1 = (−1)dfd
k · ig + sdf · g0, an easy computation — using ord(f) < ord(g) — shows that g1 ≪ g

and we conclude by induction on ≪. □

Lemma 2.4. Assume that n = ord(f) ≥ 0. For every g ∈ R{X}, there exists m, l ≥ 0 and r ∈ R{X} with
r ≪ f such that

ilf · smf · g = r mod⟨f⟩.

Proof. By Lemma 2.3, we can find r1 with ord(r1) ≤ ord(f) and m such that smf · g = r1 mod⟨f⟩. Now we
can think about f and r1 as elements of

R[X, . . . ,X(n−1)][X(n)] = S[X(n)]

The usual division algorithm in polynomial rings shows that we can find r2 with deg(r2) < deg(f) and l ≥ 0
such that

r2 = ilf · r1 mod(f)
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in S[X]. Putting everything together, we have obtain that

ilf · smf · g = r2 mod⟨f⟩
and r2 ≪ f as required. □

2.3. Prime differential ideals of k{X}. Let k be a differential field.

Theorem 2.5 (Prime differential ideals of k{X}). For every ireducible differential polynomial f ,

I(f) = {g ∈ k{X} | ∃m ≥ 0, smf · g ∈ ⟨f⟩}
is a differential prime ideal of k{X} and all the nonzero differential prime ideals of k{X} are of this form.

Here, we say that a differential polynomial f ∈ k{X} is irreducible if n = ord(f) ≥ 0 and it is irreducible
as a polynomial of k[X,X ′, . . . , X(n)].

Exercise. Show that f = (X ′′)2 − 2X ′ is irreducible but that ⟨f⟩ is not a prime ideal.

Proof of Theorem 2.5. Clearly, I(f) is a differential ideal of k⟨X⟩. To see that it is differential, note that

(sm+1
f · g)′ = (m+ 1) · (smf · g) + sm+1

f · g′

and hence that smf · g ∈ ⟨f⟩ ⇒ sm+1
f · g′ ∈ ⟨f⟩.

• Step 1. I(f) is a prime differential ideal of k{X} if f is irreducible.
Assume that u · v ∈ I(f) for some u, v ∈ k{X}. Using Lemma 2.3, we can write

sn1

f · u = r mod⟨f⟩ and sn2

f · v = s mod⟨f⟩

with ord(r), ord(s) ≤ ord(f). Now since u · v ∈ I(f), it follows easily that for some m ≥ 0,

smf · r · s ∈ ⟨f⟩
and ord(smf · r · s) ≤ ord(f) = n. The rest of Step 1 follows from the following claim.

Claim. Assume that f is irreducible and that g ∈ I(f) is a differential polynomial of order ≤ ord(f) then f
divides g in k{X}.

Proof of the claim. We can write

(3) snf · g = a0f + · · ·+ akf
(k)

If k ≥ 1 in this expression, using Lemma 2.2, we can write

f (k) = sfX
(n+k) + fk

Since X(n+k) does not appear on the left-hand side of Equation (3), after making the subtitution

X(n+k) 7→ −fk/sf

and clearing the denominators, we obtain a new expression of the form

sn+N
f · g = b0f + · · ·+ bk−1f

(k−1).

Repeating this process, we can assume that k = 0. In that case, f divides snf · g and since sf ≪ f and f is
irreducible, this implies that f divides g as required. □

• Step 2. Every nonzero prime differential ideal of k{X} is of this form.
Consider I a nonzero prime ideal and set f to be a minimal nonzero polynomial in I with respect to ≪.

Since I is prime, we must have that f is irreducible. We show that I = I(f).
⊃ Since sf ≪ f , we must have that sf /∈ I. Hence if g ∈ I(f) then for some m

smf · g ∈ ⟨f⟩ ⊂ I

and since I is prime, we conclude that g ∈ I.
⊂ Take g ∈ I. Applying Lemma 2.4 to g, we can write

ilf · skf · g = g0 mod⟨f⟩
for some g0 ≪ f . The previous equality implies that g0 ∈ I which implies g0 = 0 by minimality of f .

This completes the proof of the theorem □
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2.4. Radical ideals of R{X}. The previous result is an analogue for k{X} for prime differential ideals of
the well-known result in commutative algebra that k[X] is a principal ring. Similarly, one could hope that
every k{X} is noetherian with respect to differential ideals:

(ACC): every increasing chain of differential ideals is stationary.
This is (unfortunately?) not true as one can show that the sequence of differential ideals

In = ⟨X2, (X ′)2, . . . , (X(n))2⟩
is an infinite increasing chain of differential ideals of k{X}. The next theorem says that the next best thing
happens.

Theorem 2.6 (Description of radical ideals). Let R be a differential ring satisfying (ACC) for radical
differential ideals. The differential ring R{X} also satisfies (ACC) for radical differential ideals.

Terminology on radical ideals. Recall that an ideal I of R is radical if the ring R/I does not contain any
nonzero nilpotent element1 or equivalently if

an ∈ I ⇒ a ∈ I

Every ideal I of R is contained in a smaller radical ideal called the radical of I and denoted
√
I. More

concretely, √
I = {x ∈ R | xn ∈ I for some n}

Lemma 2.7. Assume that R is a differential ring and that I is a differential ideal. Then
√
I is a radical

differential ideal.

Proof. Assume that xn ∈ I for some n. Since I is a differential ideal, we have

∂(xn) = nxn−1∂(x) ∈ I

so that xn−1∂(x) ∈ I. Taking the derivative again, we see that (n − 1)xn−2(∂(x))2 + xn−1∂2(x) ∈ I which
after multiplying by ∂(x) implies that

(n− 1)xn−2(∂(x))3 + (xn−1∂(x))∂2(x) ∈ I

and that xn−2(∂(x))2 ∈ I. Iterating the process, we obtain that for every 1 ≤ k ≤ n,

xn−k(∂(x))2k−1 ∈ I

and hence that ∂(x)n ∈ I as required. □

Notation 2.8. For any S ⊂ R, we denote by {S} the smallest radical differential ideal containing S. By
the previous lemma, we have

{S} =
√

⟨S⟩
where as previously ⟨S⟩ denotes the differential ideal generated by S.

Lemma 2.9 (Lemma of radical ideals). For any S, T ⊂ R, we have {S} · {T} ⊂ {S · T} where S · T denotes
the set of products of elements of S and elements of T .

Proof. We prove the lemma in two steps: we first prove that a · {S} ⊂ {a · S} for any a ∈ R: consider

T = {x ∈ R | a · x ∈ {a · S}}
Clearly, T is an ideal and we claim that it is a radical differential ideal:

• differential. take x ∈ T . Since {a.S} is a differential ideal, we have taking the derivative and
multiplying by a∂(x) that

a∂(x) · ∂(a · x) = (a∂(x))2 + ∂(x)∂(a) · (a · x) ∈ {a · S}
which implies that (a∂(x))2 ∈ {a.S}. Hence so does a∂(x) and ∂(x) ∈ T as required.

• radical. Assume xn ∈ T

axn ∈ {a · S} ⇒ anxn ∈ {a · S} ⇒ a · x ∈ {a · S}
and hence x ∈ T as required.

1an element a is nilpotent if and only if an = 0 for some n ≥ 1.
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By minimality of {S}, it follows that a · {S} ⊂ {a · S} To finish the proof of the lemma, it is then enough to
repeat the same argument to conclude that

T2 = {x ∈ R | x · {T} ⊂ {S · T}}
is a radical differential ideal which contains S by the first step (exercise). □

Lemma 2.10. Let R be a differential ring. The following are equivalent:
(i) R satisfies (ACC) on radical differential ideals.
(ii) Every radical differential ideal is finitely generated.

Furthermore, if R satisfies the two previous properties then any radical differential ideal is the intersection
of finitely many prime ideals.

Proof. (i) ⇔ (ii). One direction is clear. For the converse, consider

I1 ⊂ I2 ⊂ . . . ⊂ In ⊂ . . .

an ascending chain of radical differential ideals. An easy verification shows that I =
⋃

i∈N Ii is a radical differ-
ential ideal and is therefore finitely generated by say f1, . . . , fr. Take N large enough so that f1, . . . , fr ∈ IN .
It follows that I = IN and therefore that the chain is stationary.

For the second part of the statement, for the sake of contradiction assume otherwise. By (ACC), there is
a maximal radical ideal I which is not the intersection of finitely many prime differential ideals. As I is not
prime, we can find a, b ∈ R such that

ab ∈ I and a, b /∈ I.

Hence {I, a} and {I, b} are both intersection of finitely many prime differential ideals. To get our contradic-
tion, it is therefore enough to see that

I = {I, a} ∩ {I, b}
Let c ∈ {I, a} ∩ {I, b}. Then by Lemma 2.9

c2 ∈ {I, a} · {I, b} ⊂ {I, a · b} = I

and hence c ∈ I as I is radical. This concludes the proof of the lemma. □

Proof of Theorem 2.6. Using the previous lemma, it is enough to see that every radical differential ideal
is finitely generated. Assume otherwise for the sake of the contradiction and consider the (nonempty by
assumption) set

S = {I ⊂ R{X} | I is a radical differential ideal NOT finitely generated }.
Certainly, S is partially ordered by inclusion and is inductive (exercise). By Zorn’s lemma, we can consider
a maximal element of S say I.

Claim. I is prime.

Proof of the claim. Otherwise, we can find a, b ∈ R such that a, b /∈ I and a · b ∈ I. It follows that {I, a}
and {I, b} are finitely generated. Since by Lemma 2.6, we have

{I, a} =
√

⟨I, a⟩
and similarly for {I, b}, we can find generating systems of the form

{I, a} = {a = f0, f1, . . . , fs} and {I, b} = {b = g0, g1, . . . , gr}
where the fi and gj belong to I. We claim that I = {fi · gj | i = 0, . . . , s, j = 0, . . . r}: first, fi · gj ∈ I for
every i, j follows from the construction. So we consider c ∈ I so that applying the lemma of radical ideals,

c2 ∈ {I, a} · {I, b} = {f0, . . . , fs} · {g0, . . . , gr} ⊂ {fi · gj | i = 0, . . . , s, j = 0, . . . r}
and since this ideal is radical, we conclude c ∈ {fi · gj | i = 0, . . . , s, j = 0, . . . r} as required. So I is finitely
generated which is a contradiction. Hence, I is prime. □

So we have obtain a differential ideal I which is prime and not finitely generated. By assumption on R,
I ∩ R is a radical ideal of R and hence finitely generated. It follows that the R{X}-ideal J ⊂ I generated
by I ∩R is also finitely generated. Consider f a differential polynomial minimal with respect to ≪ in I \ J .
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Claim. if · sf /∈ I

Proof of the claim. Since the ideal I is prime, it is enough to show that if /∈ I and sf /∈ I.
• Case of the initial. assume if ∈ I. Since if
llf , we obtain if ∈ J . But since

f = ifX
(n) + f0 with f0 ≪ f

we would also obtain that f0 ∈ I and therefore in J . This is a contradiction as this implies f ∈ J
• Case of the separant. assume sf ∈ I. The same argument as before shows that sf ∈ J but then

g = f − 1

d
X(n)sf ≪ f

also belongs to I and hence in J . This is again a contradiction as this implies f ∈ J .
□

By maximality of I, the radical ideal {I, if · sf} is therefore finitely generated. The same argument as in
the proof of the first claim shows that we can find c1, . . . , cm ∈ I such that

{I, if · sf} = {c0 = if · sf , c1, . . . , cm}

Claim. I = {J, f, c1, . . . , cm}

Proof of the claim. The inclusion ⊃ is clear. Conversely, consider g ∈ I and write using Lemma 2.4

isf · stf · g = g0 mod⟨f⟩
with g0 ≪ f . Since g0 ∈ I, we must have g0 ∈ J by minimality of f . Hence, if · sf · g ∈ {J, f} and we have
shown that if · sf · I ⊂ {J, f}. It follows using the lemma of radical ideals that

I2 ⊂ I · {if · sf , I} = I · {if · sf , c1, . . . , cm} ⊂ {J, f, c1, . . . , cm}
Since the latter is a radical ideal, we conclude that I ⊂ {J, f, c1, . . . , cm} as required. □

As J is finitely generated, we conclude that I is finitely generated which is our final contradiction. This
completes the proof of the theorem. □

2.5. References. The results presented in this lecture constitutes the modern foundation of differential
algebra and are due to the Joseph Ritt [Rit30]. Essentially, all the results of this section extends to the
case of partial differential fields: differential fields equipped with n commmuting derivations. The partial
case was treated later on by Ritt in [Rit45]. This lecture follows the presentation of Ritt’s results of Irving
Kaplansky in [Kap76] and Dave Marker in [MMP96].
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