Galois groups of non-standard curves in CCM

Rémi Jaoui

University of Notre Dame, Model theory seminar

November 17th

- The subject of my talk is the structure of binding groups (or Galois groups) in the theory CCM of compact complex manifolds.
- My talk will be based on an example of a paper with L. Jimenez and A. Pillay and more recent discussions with Anand based on classical constructions from complex geometry.

Binding groups: Let $T = T^{eq}$ be a stable theory, M a monster model. Assume that T interprets a pure algebraically closed field D_0 over \emptyset .

- Let D be A-definable set. D is internal to D_0 if D is in definable bijection (involving additional parameters) with a definable subset of D_0^n .
- The binding group $G(D)$ of D is the group of permutations of D induced by elementary permutations of M fixing A and D_0 pointwise. It is a stunning consequence of geometric stability theory that:

 $G(D)$ is always definable and definably isomorphic to an algebraic group.

• Under some mild assumptions on D , $G(D)$ acts transitively on the definable set D. In that case, we have a Galois correspondence and we will say that $G(D)$ is the Galois group of D (over A relatively to D_0).

Theorem (Kovacic, Singer,)

For every connected algebraic group G, there exists a definable set D internal to the constants such that the binding group of D is definably isomorphic to G.

• They also describe the dependence in the set of parameters A over which D is defined. Note that if D is defined over A and $A \subset B$ then

$$
i: G(D/B) \to G(D/A)
$$

is an injection but not always surjective. For example, if B is a model then $G(D/B) = 0.$

- If we restrict to strongly minimal sets D , there are only few possibilities for $G(D)$:
	- \bullet either $G(D)$ is finite
	- \bullet or $G(D)$ in abelian by finite. In that case, the connected component is

 $G^0 = \mathbb{G}_m, \mathbb{G}_a$, or an elliptic curve E

• or $G(D) = Aff_2$ or $G(D) = PSL_2$.

Goal of my talk: show that (in the connected case), all the groups above occur as Galois groups of non-standard curves in CCM.

Setting (fixed one for all):

 \bullet A is the standard model of CCM: the sorts are (connected) compact complex manifolds. If X_1, \ldots, X_n are CCM, we name every closed analytic subset

$$
Z\subset X_1\times\ldots\times X_n
$$

by a predicate.

- \bullet A admits the elimination of quantifiers and imaginaries in this language.
- We fix $\mathcal{A} \preccurlyeq \mathcal{A}^*$ is a saturated elementary extension of the standard model of CCM.

- If X is compact then an holomorphic fibration $f : X \to Y$ is always definable in CCM.
- \bullet More generally, if X is Zariski-open set in a compact complex manifold \hat{X} (i.e. the complement $\hat{X} \setminus X$ is a closed analytic subset) and f extends to a meromorphic morphism \hat{f} : \hat{X} --+ Y then the holomorphic fibration $f: X \rightarrow Y$ is definable in CCM.

Questions: Let $f : X \to Y$ be an holomorphic fibration definable in CCM as above.

- (1) When is the generic fibre of $f : X \to Y$ internal to the projective line \mathbb{P}^1 ?
- (2) When it is the case, let G be the binding group of the generic fibre. The group G is a natural invariant of the fibration, what does it encode?
- (3) Describe some explicit examples, where this Galois group can be computed.

I will describe some partial answers to these questions based on the algebraic properties of the base Y and of the total space X .

Let X be a compact complex manifold.

Definition

The algebraic dimension of X denoted $a(X)$ is the transcendence degree over $\mathbb C$ of the field $M(X)$ of meromorphic functions on X.

Equivalently,

• $a(X)$ is the maximal dimension of a projective manifold X such that there exists a dominant meromorphic morphism

$$
\phi:X\dashrightarrow P.
$$

• Model theoretically, $a(X)$ is the Morley rank (for example) of the biggest internal quotient of (the generic type of) X .

Classical theory to study $a(X)$ (Kodaira): based on the group $Pic(X) \simeq H^1(X, \mathcal{O}_X^*)$ of line bundles on X and the intersection product

$$
\begin{array}{ccc} \mathsf{Pic}(X) \times \mathsf{Pic}(X) \to & H^2(X,\mathbb{Z}) \times H^2(X,\mathbb{Z}) \to & H^4(X,\mathbb{Z}) \simeq \mathbb{Z} \\ (\mathcal{L}, \mathcal{L}') \longrightarrow & \left(c_1(\mathcal{L}), c_1(\mathcal{L}') \right) \longrightarrow & c_1(\mathcal{L}) \wedge c_1(\mathcal{L}') \end{array}
$$

Definition

We say that a compact complex manifold X is algebraic (or Moishezon) if X has maximal algebraic dimension i.e.

$$
dim(X)=a(X).
$$

 \bullet So X is algebraic if and only if there exists a dominant meromorphic morphism

$$
\phi:X\dashrightarrow P_1
$$

with $dim(X) = dim(P_1)$ and P_1 projective. Note that ϕ has a finite generic fibre.

• Moishezon Theorem: If X is algebraic then there exists a projective variety P_2 such that

$$
P_2 \to X \dashrightarrow P_1
$$

and $P_2 \rightarrow X$ is bimeromorphic.

If $dim(X) = 2$ then X is a projective manifold (Kodaira) but it is not necessarily true in higher dimensions (Hironaka example).

Proposition

Let $f: X \rightarrow B$ be a fibration of CCM. Assume that the generic fibre is internal to the constants and that the base B is algebraic. TFAE

- (i) The binding group G of the generic fibre is trivial.
- (ii) The binding group G of the generic fibre is finite.
- (iii) X is algebraic
	- The implication $(i) \Rightarrow (iii)$ follows from Jimenez's theory of uniform relative internality: if $G = 0$, then the fibration is uniformly internal hence preserves internality to \mathbb{P}^1 .
	- Everything else follows from Moishezon's Theorem:

A compact complex manifold X is called Kahler if it admits a hermitian metric such that the associated (1, 1)-form is closed.

 \bullet A geometric consequence: A Kahler manifold X satisfies Hodge decomposition. In particular, the first Betti number

$$
b_1(X) = H_1(X, \mathbb{Z})
$$
 is even.

• A model-theoretic consequence: (Moosa) A Kahler manifold X is essentially saturated: there exists a countable relational language \mathcal{L}_0 formed by analytic subsets of $Xⁿ$ such that every analytic subset of $Xⁿ$ is \mathcal{L}_0 -definable with parameters.

Definition (Fujiki)

The class $C \subset A$ is the class of compact complex manifolds which are meromorphic images of Kahler manifolds.

Every algebraic compact manifold is in the class C . Essential saturation holds more generally for compact complex manifolds in the class C .

Building on a construction of Lieberman, Pillay and Scanlon constructed a complex compact manifold X of dimension 3 outside of $\mathcal C$ and a surjective holomorphic morphism $f : X \to E$ towards an elliptic curve E such that:

- \bullet The family looks isotrivial: all the complex (i.e. standard) fibres of f isomorphic to the same complex Abelian variety A_0 (in fact, A_0 is a product of two elliptic curves)
- But isn't...: the (non-standard) generic fibre of f is a strongly minimal (non-standard) locally modular group.

So the behavior of a general fibre $-$ i.e. the behavior of "most" standard fibres — does not (necessarily) reflect the behavior of the generic fibre

Let $f: X \to Y$ be a fibration of relative dimension one. The generic fibre X_{ν} is a non-standard curve.

Theorem (Moosa)

- (weak form) X_v is in definable bijection (involving possible parameters) with a definable subset $D \subset \mathbb{P}^1(\mathcal{A}^*) \times \ldots \mathbb{P}^1(\mathcal{A}^*)$.
- \bullet (strong form) X_{ν} is definably isomorphic (involving possible parameters) to a non-standard projective curve.

Proof: weak form in the class C.

Assume X is in the class $\mathcal C.$ Then the 3-sorted structure $(X,Y,\mathbb P^1)$ is essentially saturated. We work in a countable language \mathcal{L}_0 :

- The fibration $f: X \rightarrow Y$ is defined over a finite set A_0 .
- Pick a non-standard realization y of the generic type of Y. $tp(y/M)$ is the non-forking extension of the generic type $p_0 = tp(y/A_0)$.
- By saturation of the standard model, pick $a_0 \models p_0$ in the standard model.
- Apply the standard Riemann existence theorem to $f^{-1}(a_0).$

Let $f : X \to Y$ be a fibration of relative dimension one. By Rahim's theorem, the generic fibre is definably isomorphic to a (non-standard) projective curve P. Denote by $g \geq 0$ the genus of P.

Corollary

Let $f : X \to Y$ be a fibration of relative dimension one. If $g \ge 2$ then the Galois group of the generic fibre is finite. In particular, if the base Y is algebraic, then X is algebraic.

Denote by G the binding group of the generic fibre.

- The strong form of Rahim's theorem implies that G can be identified with a subgroup of $Aut(P)$.
- P is smooth and has genus $g \geq 2$ so that $Aut(P)$ (and therefore G) is finite.

Conclusion for our purposes: there are two interesting cases to produce non-trivial connected Galois groups:

$$
g=0 \text{ and } g=1.
$$

Consider E a complex elliptic curve. The universal covering of E is $\mathbb C$ and there exists a lattice $\Lambda = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}$ such that

$$
E=\mathbb{C}/\Lambda.
$$

We consider successive quotients:

$$
\mathbb{C} \to \mathbb{C}/\omega_2\mathbb{Z} \to \mathbb{C}/\Lambda.
$$

Notice that $\mathbb{C}/\omega_2\mathbb{Z} \simeq \mathbb{C}^*$ through $z \mapsto \exp(\frac{2i\pi}{\omega_2}z)$ and that the image of the lattice Λ is the cyclic group generated by $q = \exp(2i\pi \frac{\omega_1}{\omega_2})$.

Lemma

Every complex elliptic curve E can be presented as

$$
\mathbb{C}^*/q^{\mathbb{Z}}
$$

where $q = \exp(2i\pi\tau)$, $\tau = \omega_1/\omega_2$ and ω_1 and ω_2 are a basis of periods of E.

 $\tau \notin \mathbb{R}$ and we can always assume that $Im(\tau) > 0$ so that $|q| < 1$.

Fix $q \in \mathbb{C}$ with $|q| < 1$ and E_q the corresponding elliptic curve.

We consider the action of $\mathbb Z$ on $\mathbb C^2\setminus\{(0,0)\}$ given by:

$$
n.(x, y) = (qnx, qny).
$$

 \bullet The discrete group $\mathbb Z$ acts properly discontinously without fixed points on $\mathbb{C}^2\setminus\{(0,0)\}$ so the quotient

$$
H_q = \mathbb{C}^2 \setminus \{(0,0)\}/\mathbb{Z}
$$

exists as a complex manifold. The complex manifold H_q is compact.

The canonical morphism $\pi:\mathbb{C}^2\setminus\{(0,0)\}\to\mathbb{P}^1$ is equivariant under this action so we obtain

$$
\pi:H_q\to\mathbb{P}^1.
$$

This is an elliptic fibration and all the complex fibres are isomorphic to the same elliptic curve $E_q = \mathbb{C}^*/q^{\mathbb{Z}}$.

 H_a is called the elliptic Hopf surface associated to q. We will see that it is not Kahler (Rahim showed that it is not even essentially saturated).

Proposition

Let $q \in \mathbb{C}$ with $|q| < 1$. Consider the associated elliptic Hopf surface:

 $\pi:H_q\to \mathbb{P}^1.$

Denote by G the Galois group of the generic fibre. Then $G = E_q$.

Key idea: H_q is not merely an elliptic fibration but an elliptic principal bundle: we have a natural action

$$
E_q \times H_q \rightarrow H_q
$$

which preserves the fibres and such that E_q acts sharply transitively on each fibre.

- Consequence: the generic fibre is internal to the constants and the Galois group G is definably isomorphic to a definable subgroup of $E_q(\mathcal{A}^*)$.
- Since the base is algebraic, either $G = E_q(\mathcal{A}^*)$ or G is trivial and H_q is an algebraic surface.
- As a real manifold, we have

$$
H_q \simeq H_{q'} \simeq \mathbb{S}^1 \times \mathbb{S}^3.
$$

So H_{q} is not a Kahler manifold and $a(H_{q})\neq 2$.

Theorem (Kodaira)

Let X be a compact complex surface. If $a(X) = 1$, then X is an elliptic fibration: there exists a holomorphic fibration:

 $\phi: X \to C$

toward a projective curve C and the fibres are elliptic curves.

- This was generalized by Ueno, Fujiki and Campana for arbitrary compact complex manifolds of dimension *n* and algebraic dimension $n - 1$.
- The original proof is based on the positivity properties of line bundles. I don't know a model theoretic proof excluding the case $g = 0$.

Corollary

Let $f: X \rightarrow Y$ be a fibration of CCM of relative dimension one with an algebraic base Y. Then the Galois group G of the generic fibre of f is either trivial or the connected component of G is an elliptic curve.

To obtain non-trivial examples with $g = 0$, we now consider the opposite case: fibrations over a base Y with $a(Y) = 0$.

A special case: vector bundles

Linear setting: Consider X a compact complex manifold, V a vector bundle over X of rank n. We have a commutative diagram

Although not compact, the vector bundle V is definable in CCM as

 $V \simeq \mathbb{P}(V \oplus E) \setminus \mathbb{P}(V)$ where E is the trivial line bundle.

The generic fibres of V and $\mathbb{P}(V)$ are both internal to the constants. Denote by $G(V)$ the Galois group of the generic fibre of V and $G(\mathbb{P}(V))$ the Galois group of the projectivization.

 \bullet $G(V)$ and $G(\mathbb{P}(V))$ are definably isomorphic respectively to algebraic subgroups of GL_n and PGL_n and we have an exact sequence

$$
1 \to G(V) \cap \mathbb{G}_m \to G(V) \to G(\mathbb{P}(V)) \to 1.
$$

 \bullet This construction is trivial over an algebraic base X:

Lemma

Let X be a projective variety. For every vector bundle V over X ,

$$
G(V)=G(\mathbb{P}(V))=0.
$$

By GAGA, if V is an analytic vector bundle on X then V (and its total space) is algebraic. So $G(V) = 0$.

• If $a(X) = 0$ then a prime model A_X of CCM over a generic point of X "has no new constants":

$$
\mathbb{P}^1(\mathcal{A}_X)=\mathbb{P}^1(\mathbb{C}).
$$

So $G(V)$ and $G(\mathbb{P}(V))$ are definably isomorphic to complex algebraic groups.

Definition

A (complex) K3-surface X is a compact complex surface which admits a global nowhere vanishing 2-form $\omega\in\Omega^2_X$ (i.e. $\Omega^2_X\simeq \mathcal{O}_X)$ and with irregularity 0:

 $H^1(X, \mathcal{O}_X) = \{0\}.$

Using the exponential exact sequence $0 \to \mathbb{Z}_X \to \mathcal{O}_X \to \mathcal{O}_X^* \to 0$, we obtain:

$$
H^0(X,\mathcal{O}_X^*) \to H^1(X,\mathbb{Z}) \to H^1(X,\mathcal{O}_X) \to H^1(X,\mathcal{O}_X^*) \to H^2(X,\mathbb{Z}).
$$

(1) $H^1(X, \mathbb{Z}) = 0$. In fact, a K3-surface X is simply connected.

(2) Hodge decomposition implies that for any(complex) K3-surface,

$$
H^{0}(X,\Omega_{X}^{1})=H^{0}(X,\Theta_{X})=\{0\}.
$$

(3) For a K3-surface, $Pic(X)$ is a finitely generated abelian group of rank

$$
r=\rho(X)\in\{0,\ldots,20\}.
$$

Complex K3-surfaces X can have arbitrary algebraic dimension $a(X)$, arbitrary position with respect to Zilber trichotomy and arbitrary Picard number $\rho(X) \in \{0, \ldots, 20\}.$

Definition

A "generic" K3-surface is a K3-surface X with $Pic(X) = 0$.

A "generic" K3-surface X satisfies $a(X) = 0$. In fact, X is strongly minimal and disintegrated (but in general not ω -categorical).

This can be seen directly but also follows from the same program I used to describe generic planar algebraic vector fields using what follows.

Theorem (See Compact complex surfaces, Van de Ven, Peters, Barth)

Let X be any K3-surface. Then there exists a polydisk $\Delta\subset\mathbb{C}^n$ centered at 0 and a (flat) family of K3-surfaces $\pi : \mathcal{X} \to \Delta$ such that:

- \bullet $X_0 \simeq X$.
- \bullet Outside of a countable union of proper analytic subset $Z_i \subset \Delta$:

for every $s \in \Delta \setminus \cup_{i\in \mathbb{N}} Z_i$, \mathcal{X}_s is K3-surface with $Pic(X_s) = 0$.

Proposition

Let X be a compact complex manifold and V a vector bundle over X (or more generally a coherent sheaf over X). Then the following are equivalent:

- (i) The connected component of the Galois group $G(V)$ of V is solvable.
- (ii) There exists a base change $f : X' \to X$ with $dim(X) = dim(X')$ such that the vector bundle f^*V is filtrable: there exists a finite sequence of coherent sheaves on X'

$$
0\subset \mathcal{F}_1\subset \mathcal{F}_2\subset \ldots \subset \mathcal{F}_n=f^*V
$$

with $rk(\mathcal{F}_{i+1}/\mathcal{F}_i)=1$.

Two ingredients:

- Lie-Kolchin Theorem: A solvable connected linear algebraic group can be embedded in the group of triangular matrices.
- If $\phi: X \dashrightarrow X'$ is bimeromorphic then ϕ^*V is filtrable if and only if V is filtrable.

Corollary

Let X be a "generic" K3-surface. Then the Galois group $G(\mathbb{P}(T_X))$ of the generic fibre of $\pi : \mathbb{P}(T_X) \to X$ is (definably isomorphic to) PSL_2 .

- The strong form of the non-standard Riemann existence theorem, we first prove that $G(\mathbb{P}(T_X))$ is definably isomorphic to an algebraic subgroup $PSL₂$.
- By contradiction: Assume that $G \neq PSL_2$. Then the connected component of G^0 is solvable. The exact sequence:

$$
1\to {\mathbb G}_m\cap G(\mathcal{T}_X)\to G(\mathcal{T}_X)\to G(\mathbb{P}(\mathcal{T}_X))\to 1
$$

implies that the connected component of $G(T_X)$ is solvable too!

- Let $\pi : X' \to X$ be a base change. The ramification locus has pure codimension one but X has no curves... So π is unramified and since X is simply connected, π is bimeromorphic.
- So T_X is filtrable and there exists a subline bundle $\mathcal{L} \subset T_X$ (i.e. an analytic foliation on X). But $Pic(X) = 0$ so that $\mathcal{L} = \mathcal{O}_X$.

This implies that X supports a global vector field, contradiction.

Theorem

Let G be a connected complex algebraic group acting faithfully and transitively on a strongly minimal set, i.e.

 $G = \mathbb{G}_m, \mathbb{G}_a$, a complex elliptic curve E, $G = Aff_2$ and $G = PSL_2$.

Then G can be realized as the Galois group of a non-standard curve in **CCM**.

(a) If G is an elliptic curve, use elliptic Hopf surfaces over \mathbb{P}^1 .

By Kodaira theorem, one can not obtain non-trivial linear algebraic groups over \mathbb{P}^1 (and more generally over any algebraic base)

- (b) If $G = PSL₂$, use the projectivization of the tangent bundle of a "generic" K3-surface.
- (c) The other linear algebraic groups Aff_2 , \mathbb{G}_m , \mathbb{G}_a are all subgroups of PSL_2 . One can conclude using (b) and the Galois correspondence.

Thank you for your attention!