A model-theoretic invitation to web geometry

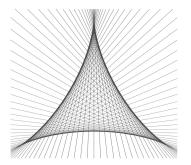
Rémi Jaoui

Model theory seminar - University of Notre Dame

• The title is the reference to the book

An invitation to web geometry by L. Pirio and J. V. Pereira.

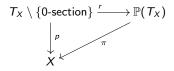
• Date of birth of web geometry: Spring 1927 in Naples.



A 3-web on a hyperbolic triangle Δ : from every point $x \in \Delta$, a set of three lines $\{l_1(x), l_2(x), l_3(x)\}$ of $T\Delta_x$.

The projectivized tangent bundle

We fix X a smooth irreducible complex algebraic variety of dimension two. T_X denotes the tangent space of X and $\mathbb{P}(T_X)$ the space of lines of T_X .



Definition

A foliation is a rational section of $\pi : \mathbb{P}(T_X) \to X$: the germ of a definable section of π at the generic point of X.

 $\sigma: X \dashrightarrow \mathbb{P}(T_X)$ satisfying $\pi \circ \sigma = id_X$.

An **irreducible web** is an algebraic section of $\pi : \mathbb{P}(T_X) \to X$: a rational section after a generically finite extension $\phi : X' \to X$:

Typical statement: Given an additional structure on X (a vector field $v : X \to T_X$ or a rational dominant $\sigma : X \dashrightarrow X$), describe the relations between:

- the properties of the differential equation (X, v) or of the difference (X, σ) (seen respectively in DCF₀ and ACFA).
- the structure of algebraic sections of the projection $\mathbb{P}(\mathcal{T}_X)$ compatible with this additional structure (the so-called **invariant foliations and invariant webs**).

Plan of my talk:

- (1) Describe an "improved formalism" for foliations and webs in dimension two.
- (2) Geometric stability theory in \mbox{DCF}_0 and comparisons with CCM and $\mbox{ACFA}_0.$
- (3) A Galois-theoretic analysis of invariant webs.

The theory of foliations and webs can be carried out purely analytically and applied in **CCM**. For presentation purposes, I will describe webs and foliations only for an algebraic variety X.

Intuitive idea: Having many algebraic sections is a particular instance of having "a lot of structure".

• $(T = ACF_0)$ If $\pi : E \to X$ be a vector bundle of rank *n* over X then E is generated by its rational sections: there are rational sections $\sigma, \ldots \sigma_n$ of π such that

 $(\sigma_1(x), \ldots \sigma_n(x))$ form a basis of E_x for every $x \in U \subset X$.

In particular, $E = T_X$, any algebraic variety X admits many foliations and webs.

Corollary (GAGA, T = CCM)

Let M be a compact complex manifold. If there exists an analytic vector bundle E over M without any non-zero meromorphic section then M is not isomorphic to a projective algebraic variety.

Proposition (Prototype statement, T = CCM)

Let M be a compact complex **surface**. Assume that M does not support any analytic web then the generic type of M is minimal and locally modular.

Horizontal divisors of $\mathbb{P}(T_X)$

Consider an algebraic section:

 $\overline{\sigma(X')}$ is a closed irreducible hypersurface of $\mathbb{P}(T_X)$ which projects dominantly on X.

Definition

The group $Div_h(\mathbb{P}(T_X))$ of horizontal divisors is the free abelian group generated by the closed irreducible hypersurfaces of $\mathbb{P}(T_X)$ which dominate X.

 A non-horizontal hypersurface has the form π⁻¹(C) for some irreducible curve C ⊂ X. So if U ⊂ X is a dense open set then

$$Div_h(\mathbb{P}(T_X)) o Div_h(\mathbb{P}(T_U))$$

is an isomorphism.

• If $D = k_1 Z_1 + \ldots k_n Z_n$ and r_i the cardinal of the generic fibre

$$\pi_{|Z_i}: Z_i \to X$$

we set $deg(D) = \sum r_i k_i \in \mathbb{Z}$.

Definition

Let $r \ge 1$. An algebraic *r*-web on X is an effective horizontal divisor

$$D = k_1 Z_1 + \ldots k_n Z_n \in Div_h(\mathbb{P}(T_X)) \text{ (with } k_i > 0)$$

of degree r.

- Case r = 1: An algebraic 1-web is always irreducible and of the form $\overline{\sigma_{\mathcal{F}}(X)}$ for some foliation $\sigma_{\mathcal{F}} : X \dashrightarrow \mathbb{P}(T_X)$.
- An algebraic *r*-web is called reduced if $k_i = 1$ for all *i*. A reduced algebraic *r*-web can be identified with its support $|D| = Z_1 \cup ... \cup Z_n$. Then its degree is the cardinal of the generic fibre of

$$\pi: |D| = Z_1 \cup \ldots \cup Z_n \to X.$$

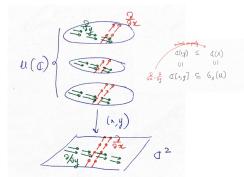
• To formulate a second description of webs, I will need to describe explicitly the sheaf \mathcal{O}_{T_X} of functions on T_X .

Open covers with étale coordinates

An affine open set with étale coordinates of X is an affine open set $U \subset X$ endowed with two functions $x, y \in \mathcal{O}_X(U)$ such that:

$$(x,y): U \to \mathbb{A}^2$$

is étale, i.e. a local analytic diffeomorphism at each of its complex points.



Any smooth algebraic surface X can be covered by affine open sets with étale coordinates.

Let U an open set with étale coordinates $x, y \in \mathcal{O}_X(U)$

• Any vector field v on U and any one-form $\omega \in \Omega^1_X(U)$ can be uniquely written as:

$$v = a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}$$
 and $\omega = a.dx + b.dy$ with $a, b \in \mathcal{O}_X(U)$.

• The differential $d : \mathcal{O}_X(U) \to \Omega^1_X(U)$ is given by:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

for $f \in \mathcal{O}_X(U)$.

So differential calculus on U is simply an extension of differential calculus on \mathbb{C}^2 with k[x, y] replaced by $\mathcal{O}_X(U)$.

$\mathcal{O}_X(U)[dx, dy]$

Let U is an affine open sets with étale coordinates $x, y \in \mathcal{O}_X(U)$.

- We form the algebra $\mathcal{O}_X(U)[dx, dy]$ of formal polynomials with coefficients in $\mathcal{O}_X(U)$ and formal variables dx and dy.
- Example:

$$\omega = f_1.dx.(dy)^2 + f_2.(dx)^3 + \ldots + f_3.dx(dy)^4$$

Lemma

Any element of $\mathcal{O}_X(U)[dx, dy]$ defines naturally a function on $p^{-1}(U)$ and this induces an isomorphism:

$$\mathcal{O}_X(U)[dx, dy] \simeq \mathcal{O}_{T_X}(p^{-1}(U))$$

- O_X(U)[dx, dy] is a graded algebra graded by the total degree in dx and dy. A coordinate-free presentation of O_X(U)[dx, dy] ≃ Sym[●](Ω¹_X(U))
- These graded local algebra come together as a global sheaf of graded algebras on X denoted by

$$Sym^{\bullet}(\Omega^{1}_{X}) = \mathcal{O}_{X} \oplus \Omega^{1}_{X} \oplus \ldots \oplus Sym^{k}(\Omega^{1}_{X}) \oplus \ldots$$

Let W be an algebraic web on X. Consider

$$Z = \overline{r^{-1}(W)} = r^{-1}(W) \cup \{0 - \text{section}\}\$$

as an hypersurface of T_X .

 If U an affine open sets with étale coordinates (x, y) then p⁻¹(U) is affine and:

$$Z\cap p^{-1}(U):=(\omega=0)$$

for some function $\omega \in \mathcal{O}_{T_X}(p^{-1}(U)) \simeq \mathcal{O}_X(U)[dx, dy].$

• If W has degree r then f is an homogeneous polynomial of degree r:

$$\omega = f_0(dx)^r + f_1 dx (dy)^{r-1} + \ldots + f_r (dy)^r$$

• If U' is another open set and $\omega' = 0$ is another equation for W then is a equation of generates then

$$\omega'_{U'\cap U}=f.\omega_{U'\cap U}$$
 for some $f\in \mathcal{O}^*_X(U\cap U').$

Conclusion: the local equations of the divisor glue together and define a global invertible subsheaf $\mathcal{L} \subset \operatorname{Sym}^k(\Omega^1_X)$.

Proposition

Let X be a smooth irreducible algebraic surface. There is a one to one correspondence between the sets of

- (i) effective irreducible divisors W of degree r in $Div_h(\mathbb{P}(T_X))$.
- (ii) invertible subsheaves $\mathcal{L} \subset Sym^r(\Omega^1_X)$ such that $Sym^r(\Omega^1_X)/\mathcal{L}$ does not have torsion.
 - Indeed to show that $Sym^r(\Omega^1_X)/\mathcal{L}$ does not have torsion we need to show that:

 $f.\omega$ vanishes on W for some $f \in \mathcal{O}_X(U) \Rightarrow \omega$ vanishes on W

• (f = 0) defines an algebraic curve C on U and since W is horizontal:

 $W \setminus \pi^{-1}(C)$ is Zariski-dense in W.

• ω vanishes on $W \setminus \pi^{-1}(C)$ so it vanishes on W.

Operations on webs

Let $\mathcal{W}, \mathcal{W}'$ be two algebraic webs on X represented by horizontal divisors W and W' in $\mathbb{P}(\mathcal{T}_X)$.

(i) There is a sum operations on webs on X denoted respectively

 $\mathcal{W} \boxtimes \mathcal{W}'$ and W + W'.

(ii) If $\phi: X' \dashrightarrow X$ is dominant and generically finite then there is a pull-back operation

$$\mathcal{W} \mapsto \phi^* \mathcal{W}$$

which preserves the degrees of webs.

(iii) If G is a finite group acting on an affine variety X and $\{W_1, \ldots, W_n\}$ denotes the orbit of W under G, there is a unique web W_Y on Y = X/Gsuch that

$$\phi^*\mathcal{W}_Y=\mathcal{W}_1\boxtimes\ldots\boxtimes\mathcal{W}_r.$$

Lemma (Decomposition lemma)

For every algebraic r-web W, there exists a generically finite $\phi : X' \dashrightarrow X$ and r foliations $\mathcal{F}_1, \ldots, \mathcal{F}_r$ such that

 $\phi^* \mathcal{W} = \mathcal{F}_1 \boxtimes \ldots \boxtimes \mathcal{F}_r$ (completely decomposable).

Let $\mathcal{F} \subset \Omega^1_X$ be a foliation X (equivalently, $\sigma : X \dashrightarrow \mathbb{P}(T_X)$ or $F = \overline{\sigma(X)}$). A foliation can be broken in two parts:

- (1) The singular locus $\operatorname{Sing}(\mathcal{F})$ of \mathcal{F} is the set of points x where Ω_X^1/\mathcal{F} is not locally free at x. Equivalently, $x \in \operatorname{Sing}(\mathcal{F})$ if and only if
 - σ is not regular at x,
 - $F_x = \mathbb{P}(T_{X,x}).$
- (2) $S = \text{Sing}(\mathcal{F})$ is a finite subset of X and \mathcal{F} defines a regular foliation on $U = X(\mathbb{C}) \setminus S$.

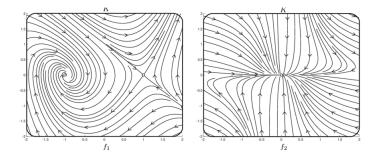
On $X(\mathbb{C}) \setminus S$, the foliation \mathcal{F} defines an equivalence relation:

 $x \sim_{\mathcal{F}} y$ if and only there exists an analytic curve $\gamma : \mathbb{D} \to X(\mathbb{C}) \setminus S$ joining x to y such that $\gamma'(t) \in F_{\gamma(t)}$ for all $t \in \mathbb{D}$.

Definition

The analytic leaves of \mathcal{F} are the equivalence classes of this equivalence relation. They are analytic Riemann surfaces immersed in X^{an} .

Some pictures in the real locus



Some pictures in the real locus (Arnold)

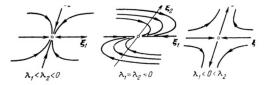


Fig. 126 An unstable focus.

Fig. 127 A saddle point.

Fig. 128 An unstable node.

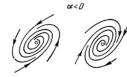


Fig. 129 Stable foci.

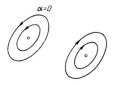


Fig. 131 Unstable foci.

Theorem (Jouanolou)

Let $\mathcal{F} \subset \Omega^1_X$ be a foliation X (equivalently, $\sigma : X \dashrightarrow \mathbb{P}(T_X)$ or $F = \overline{\sigma(X)}$). TFAE:

- (i) Infinitely many analytic leaves of \mathcal{F} are algebraic curves on X.
- (ii) All leaves of \mathcal{F} are algebraic curves on X.
- (iii) There exists an algebraic morphism $\phi : X \setminus Sing(\mathcal{F}) \to C$ such that the leaves of \mathcal{F} are the connected components of the fibres of ϕ .
 - If these conditions are realized, we say that ${\cal F}$ is an algebraically integrable foliation.
 - An algebraic *r*-web \mathcal{W} is algebraically integrable if for some (equiv. any) generically finite cover such that

$$\phi^*\mathcal{W}=\mathcal{F}_1\boxtimes\ldots\boxtimes\mathcal{F}_r$$

the foliations $\mathcal{F}_1, \ldots, \mathcal{F}_r$ are algebraically integrable.

• A typical foliation \mathcal{F} (resp. a typical web) is not algebraically integrable.

From ACF₀ to DCF₀

We now start moving from ACF₀ to DCF₀: our algebraic surface X is endowed with a vector field v i.e. a regular section of $p : T_X \to X$. Locally, on a open set $U \subset X$ with étale coordinates (x, y), the vector field v can written as:

$$v = a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}$$
 with $a, b \in \mathcal{O}_X(U)$.

We identify v with the derivation $\delta_v = a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}$ induced on $\mathcal{O}_X(U)$.

Lemma

There exists a unique extension of the derivation δ_v to $\mathcal{O}_X(U)[dx, dy]$ denoted

$$\mathcal{L}_{v}: \mathcal{O}_{X}(U)[dx, dy] \rightarrow \mathcal{O}_{X}(U)[dx, dy]$$

satisfying:

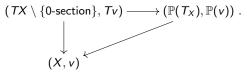
- \mathcal{L}_v is homogeneous of degree 0.
- For every $f \in \mathcal{O}_X(U)$, $\mathcal{L}_v(df) = d(\delta_v(f))$.

This defines a global vector field w on T_X . In fact, w = Tv where

$$T_v: T_X \to T(T_X)$$

obtained by functoriality.

• **Consequence:** if v is a vector field on X, we obtain a commutative diagram



where $\phi: (X, v) \rightarrow (Y, w)$ means that ϕ is rational dominant morphism from X to Y satisfying $d\phi(v) = w$.

- Since Tv is "linear on the fibres", Tv descends to a vector field on $\mathbb{P}(T_X)$ (the global vector fields on \mathbb{P}^1 are the images in homogeneous coordinates of linear vector fields).
- It is a geometric variant of the classical result which asserts that if y'' = ay' + by then y'/y satisfies the Ricatti equation:

$$z'=-z^2+az+b.$$

This vector field extends to \mathbb{P}^1 (by computing (1/z)' for example).

Proposition

Let v be a vector field on X and let $W \subset Sym^k(\Omega^1_X)$ be an algebraic r-web on X and let W be the associated horizontal divisor. TFAE:

- The horizontal divisor W (equivalently, all its irreducible components) is tangent to $\mathbb{P}(v)$.
- The web \mathcal{W} is stable under \mathcal{L}_v i.e. $\mathcal{L}_v(\mathcal{W}) \subset \mathcal{W}$.
- When these conditions hold, we say that the web (or the foliation) \mathcal{W} is invariant under the vector field v.
- Let $\mathcal{U} \models \mathsf{DCF}_0$.

$$(\mathbb{P}(T_{X}), IP(v)) \stackrel{\delta}{\subseteq} \mathbb{IP}(T_{X})(IU)$$

$$(\mathbb{P}(T_{X}), IP(v)) \stackrel{\delta}{\subseteq} \mathbb{V}(IU)$$

$$(X, v) \stackrel{\delta}{\subseteq} \mathbb{V}(IU)$$

$$\mathbb{K}elder - closed$$

---- an algebraic foliation Whed is NOT enversant under v

---- an algebraic foliation which is invariant under it

Recall that a type is semi-minimal if it is almost internal to a minimal type.

Proposition ($T = \mathsf{DCF}_0$)

Let v be a vector field on X and denote by p the generic type of the differential equation (X, v).

If there are **no algebraically integrable foliations on** X **invariant under the vector field** v then p is semi-minimal.

- By geometric stability theory, if $p = tp(a/\mathbb{C})$ then there always exists $a_0 \in dcl(a, \mathbb{C}) \setminus \mathbb{C}$ such that $tp(a_0/\mathbb{C})$ is semi-minimal
- Since C⟨a⟩ has transcendence degree two, either p is semi-minimal or C⟨a₀⟩ has transcendence degree one. (so assume the second case).
- There exists a curve C and a vector field w on C such that $tp(a_0/\mathbb{C})$ is intedefinable with the generic type of (C, w). The germ of a definable map sending a to a_0 defines

$$\phi:(X,v)\dashrightarrow(C,w)$$

- Denote by $\mathcal{F} = Ker(d\phi)$ the foliation tangent to the fibres of ϕ . By definition, this foliation is algebraically integrable.
- $d\phi(v) = w$ implies that the foliation \mathcal{F} is invariant.

Theorem $(T = \mathsf{DCF}_0)$

Let v be a vector field on X and denote by p the generic type of the differential equation (X, v).

Assume that p is orthogonal to the constants.

If X does not admit any **algebraically integrable 2-webs** nor **any algebraically integrable foliations** invariant under the vector field v then p is minimal and disintegrated.

- Without the assumption that *p* is orthogonal to the constants, a counterexample is given by a global vector field (hence translation invariant) on a simple abelian variety *A* of dimension two.
- Are they essentially (up to a finite to finite correspondence) the only counterexamples?
- If w is a vector field on a curve C such that (C, w) is orthogonal to the constants. then set

$$X = S^2 C = C \times C / \sim$$
 and $w = v \times v / \sim$.

where $(x, y) \sim (y, x)$ admits an invariant algebraically integrable 2-web and no invariant algebraically integrable foliations. (Moosa-Pillay)

Proposition (Prototype statement, T = CCM)

Let M be a compact complex surface. If M does not support any analytic web then the generic type of M is minimal and locally modular.

- *M* does not admit support analytic foliation, so in particular *M* does not support any "meromorphically integrable" analytic foliation.
- Like in DCF_0 , this implies that the generic type of M is semi-minimal.
- $\pi: T_M \to M$ do not have non-zero algebraic sections. So by GAGA Corollary, M is not almost internal to \mathbb{P}^1 so that M is orthogonal to \mathbb{P}^1 .
- By Riemann existence theorem,

semi minimal + orthogonal to \mathbb{P}^1 in dimension two \Rightarrow minimal **Remark:** If we assume orthogonality to \mathbb{P}^1 , we only need to look at analytic foliations and we don't need to consider analytic 2-webs.

Theorem (C. Favre, J. V. Pereira, '14)

Let $\sigma : X \dashrightarrow X$ be a dominant rational map with **positive entropy**. Assume that there exists an irreducible 2-web W invariant under σ and that σ does not admit any other invariant irreducible webs (in particular any foliation). Then:

- (1) The 2-web W is algebraically integrable.
- (2) There exists a rational map $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ such that
 - (\mathbb{P}^1,ϕ) is not conjugated to a monomial, a Chebychev polynomial or a Lattes map.
 - (X, σ) is semi conjugated (by a rational map) to

$$S^2(\mathbb{P}^1,\phi) = (\mathbb{P}^1 \times \mathbb{P}^1, \phi \times \phi) / \sim$$

where $(x, y) \sim (y, x)$.

In fact, $S^2(\mathbb{P}^1) \simeq \mathbb{P}^2$.

Let X be an algebraic variety and v be a vector field on X.

- We have described the irreducible webs on X invariant by v as the algebraic solutions of a Ricatti equation given by the "projectivized Kolchin tangent bundle" over the differential field (C(X), δ_v).
- We denote by G the connected component of the Galois group of this Ricatti equation (in other words, the Galois group of this Ricatti equation over $(\mathbb{C}(X), \delta_v)^{alg}$
- A characteristic feature of differential algebra "over the constants": for every vector field v, the foliation $\mathcal{F}(v)$ tangent to v is tautologically invariant under v.

Consequence (Kovacic):

 $G \neq PSl_2(\mathbb{C}).$

Proposition $(T = DCF_0)$

Let v be a vector field on X such that $\mathcal{F}(v)$ is not algebraically integrable. Exactly one of the three following cases occur:

- G ≃ Aff₂(C) if and only if F(v) is the unique irreducible web invariant under v.
- (2) G ≃ G_m(ℂ) if and only if there are exactly two irreducible webs invariant under v. One of them is F(v) and the other one W is:
 (2a) either a foliation,
 (2b) or a 2-web.
- (3) G = 0 if and only if v admits at least three invariant irreducible webs if and only if v admits infinitely many.

This follows from arguments of Kovacic on Ricatti equations.

Thank you for your attention!