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Introduction

The title is the reference to the book

An invitation to web geometry by L. Pirio and J. V. Pereira.

Date of birth of web geometry: Spring 1927 in Naples.

A 3-web on a hyperbolic triangle ∆: from every point x ∈ ∆, a set of three
lines {l1(x), l2(x), l3(x)} of T ∆x .
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The projectivized tangent bundle

We fix X a smooth irreducible complex algebraic variety of dimension two.
TX denotes the tangent space of X and P(TX ) the space of lines of TX .

TX \ {0-section}
r //

p

��

P(TX )

π

ww
X

Definition

A foliation is a rational section of π : P(TX )→ X : the germ of a definable
section of π at the generic point of X .

σ : X 99K P(TX ) satisfying π ◦ σ = idX .

An irreducible web is an algebraic section of π : P(TX )→ X : a rational section
after a generically finite extension φ : X ′ 99K X :

P(TX )

��

X ′

<<

// X
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Typical statement: Given an additional structure on X (a vector field
v : X → TX or a rational dominant σ : X 99K X ), describe the relations
between:

the properties of the differential equation (X , v) or of the difference (X , σ)
(seen respectively in DCF0 and ACFA).
the structure of algebraic sections of the projection P(TX ) compatible with
this additional structure (the so-called invariant foliations and invariant
webs).

Plan of my talk:
(1) Describe an “improved formalism” for foliations and webs in dimension two.

(2) Geometric stability theory in DCF0 and comparisons with CCM and
ACFA0.

(3) A Galois-theoretic analysis of invariant webs.

The theory of foliations and webs can be carried out purely analytically and
applied in CCM. For presentation purposes, I will describe webs and foliations
only for an algebraic variety X .
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An example

Intuitive idea: Having many algebraic sections is a particular instance of having
“a lot of structure”.

(T = ACF0) If π : E → X be a vector bundle of rank n over X then E is
generated by its rational sections: there are rational sections σ, . . . σn of π
such that

(σ1(x), . . . σn(x)) form a basis of Ex for every x ∈ U ⊂ X .

In particular, E = TX , any algebraic variety X admits many foliations and webs.

Corollary (GAGA, T = CCM)

Let M be a compact complex manifold. If there exists an analytic vector
bundle E over M without any non-zero meromorphic section then M is not
isomorphic to a projective algebraic variety.

Proposition (Prototype statement, T = CCM)

Let M be a compact complex surface. Assume that M does not support any
analytic web then the generic type of M is minimal and locally modular.
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Horizontal divisors of P(TX )

Consider an algebraic section:

P(TX )

��

X ′

<<

// X

σ(X ′) is a closed irreducible hypersurface of P(TX ) which projects dominantly
on X .

Definition

The group Divh(P(TX )) of horizontal divisors is the free abelian group
generated by the closed irreducible hypersurfaces of P(TX ) which dominate X .

A non-horizontal hypersurface has the form π−1(C) for some irreducible
curve C ⊂ X . So if U ⊂ X is a dense open set then

Divh(P(TX ))→ Divh(P(TU))

is an isomorphism.
If D = k1Z1 + . . . knZn and ri the cardinal of the generic fibre

π|Zi
: Zi → X

we set deg(D) =
∑

riki ∈ Z.
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Algebraic webs

Definition

Let r ≥ 1. An algebraic r -web on X is an effective horizontal divisor

D = k1Z1 + . . . knZn ∈ Divh(P(TX )) (with ki > 0)

of degree r .

Case r = 1: An algebraic 1-web is always irreducible and of the form
σF (X ) for some foliation σF : X 99K P(TX ).

An algebraic r -web is called reduced if ki = 1 for all i . A reduced algebraic
r -web can be identified with its support | D |= Z1 ∪ . . . ∪ Zn. Then its
degree is the cardinal of the generic fibre of

π :| D |= Z1 ∪ . . . ∪ Zn → X .

To formulate a second description of webs, I will need to describe explicitly
the sheaf OTX of functions on TX .
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Open covers with étale coordinates

An affine open set with étale coordinates of X is an affine open set U ⊂ X
endowed with two functions x , y ∈ OX (U) such that:

(x , y) : U → A2

is étale, i.e. a local analytic diffeomorphism at each of its complex points.

Any smooth algebraic surface X can be covered by affine open sets with étale
coordinates.
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Open covers with étale coordinates

Let U an open set with étale coordinates x , y ∈ OX (U)

Any vector field v on U and any one-form ω ∈ Ω1
X (U) can be uniquely

written as:

v = a
∂

∂x
+ b

∂

∂y
and ω = a.dx + b.dy with a, b ∈ OX (U).

The differential d : OX (U)→ Ω1
X (U) is given by:

df =
∂f

∂x
dx +

∂f

∂y
dy

for f ∈ OX (U).

So differential calculus on U is simply an extension of differential calculus on
C2 with k[x , y ] replaced by OX (U).
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OX (U)[dx , dy ]

Let U is an affine open sets with étale coordinates x , y ∈ OX (U).

We form the algebra OX (U)[dx , dy ] of formal polynomials with
coefficients in OX (U) and formal variables dx and dy .

Example:
ω = f1.dx .(dy)2 + f2.(dx)3 + . . .+ f3.dx(dy)4

Lemma

Any element of OX (U)[dx , dy ] defines naturally a function on p−1(U) and this
induces an isomorphism:

OX (U)[dx , dy ] ' OTX (p−1(U))

OX (U)[dx , dy ] is a graded algebra graded by the total degree in dx and
dy . A coordinate-free presentation of OX (U)[dx , dy ] ' Sym•(Ω1

X (U))

These graded local algebra come together as a global sheaf of graded
algebras on X denoted by

Sym•(Ω1
X ) = OX ⊕ Ω1

X ⊕ . . .⊕ Symk(Ω1
X )⊕ ...
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Local equations of a web

Let W be an algebraic web on X . Consider

Z = r−1(W ) = r−1(W ) ∪ {0− section}

as an hypersurface of TX .

If U an affine open sets with étale coordinates (x , y) then p−1(U) is affine
and:

Z ∩ p−1(U) := (ω = 0)

for some function ω ∈ OTX (p−1(U)) ' OX (U)[dx , dy ].

If W has degree r then f is an homogeneous polynomial of degree r :

ω = f0(dx)r + f1dx(dy)r−1 + . . .+ fr (dy)r

If U ′ is another open set and ω′ = 0 is another equation for W then is a
equation of generates then

ω′U′∩U = f .ωU′∩U for some f ∈ O∗X (U ∩ U ′).

Conclusion: the local equations of the divisor glue together and define a global
invertible subsheaf L ⊂ Symk(Ω1

X ).

Rémi Jaoui A model-theoretic invitation to web geometry



Second definition of webs

Proposition

Let X be a smooth irreducible algebraic surface. There is a one to one
correspondence between the sets of

(i) effective irreducible divisors W of degree r in Divh(P(TX )).

(ii) invertible subsheaves L ⊂ Symr (Ω1
X ) such that Symr (Ω1

X )/L does not
have torsion.

Indeed to show that Symr (Ω1
X )/L does not have torsion we need to show

that:
f .ω vanishes on W for some f ∈ OX (U) ⇒ ω vanishes on W

(f = 0) defines an algebraic curve C on U and since W is horizontal:

W \ π−1(C) is Zariski-dense in W .

ω vanishes on W \ π−1(C) so it vanishes on W .
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Operations on webs

Let W,W ′ be two algebraic webs on X represented by horizontal divisors W
and W ′ in P(TX ).

(i) There is a sum operations on webs on X denoted respectively

W �W ′ and W + W ′.

(ii) If φ : X ′ 99K X is dominant and generically finite then there is a pull-back
operation

W 7→ φ∗W

which preserves the degrees of webs.

(iii) If G is a finite group acting on an affine variety X and {W1, . . . ,Wn}
denotes the orbit of W under G , there is a unique web WY on Y = X/G
such that

φ∗WY =W1 � . . .�Wr .

Lemma (Decomposition lemma)

For every algebraic r -web W, there exists a generically finite φ : X ′ 99K X and
r foliations F1, . . . ,Fr such that

φ∗W = F1 � . . .� Fr (completely decomposable).
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Singular locus and analytic leaves of a foliation

Let F ⊂ Ω1
X be a foliation X (equivalently, σ : X 99K P(TX ) or F = σ(X )). A

foliation can be broken in two parts:
(1) The singular locus Sing(F) of F is the set of points x where Ω1

X/F is not
locally free at x . Equivalently, x ∈ Sing(F) if and only if

σ is not regular at x ,
Fx = P(TX ,x ).

(2) S = Sing(F) is a finite subset of X and F defines a regular foliation on
U = X (C) \ S .

On X (C) \ S , the foliation F defines an equivalence relation:

x ∼F y if and only there exists an analytic curve γ : D→ X (C) \ S joining x to
y such that γ′(t) ∈ Fγ(t) for all t ∈ D.

Definition

The analytic leaves of F are the equivalence classes of this equivalence relation.
They are analytic Riemann surfaces immersed in X an.
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Some pictures in the real locus
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Some pictures in the real locus (Arnold)
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Algebraically integrable foliations and webs

Theorem (Jouanolou)

Let F ⊂ Ω1
X be a foliation X (equivalently, σ : X 99K P(TX ) or F = σ(X )).

TFAE:

(i) Infinitely many analytic leaves of F are algebraic curves on X .

(ii) All leaves of F are algebraic curves on X .

(iii) There exists an algebraic morphism φ : X \ Sing(F)→ C such that the
leaves of F are the connected components of the fibres of φ.

If these conditions are realized, we say that F is an algebraically
integrable foliation.
An algebraic r -web W is algebraically integrable if for some (equiv. any)
generically finite cover such that

φ∗W = F1 � . . .� Fr

the foliations F1, . . . ,Fr are algebraically integrable.

A typical foliation F (resp. a typical web) is not algebraically integrable.
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From ACF0 to DCF0

We now start moving from ACF0 to DCF0: our algebraic surface X is endowed
with a vector field v i.e. a regular section of p : TX → X .
Locally, on a open set U ⊂ X with étale coordinates (x , y), the vector field v
can written as:

v = a
∂

∂x
+ b

∂

∂y
with a, b ∈ OX (U).

We identify v with the derivation δv = a ∂
∂x

+ b ∂
∂y

induced on OX (U).

Lemma

There exists a unique extension of the derivation δv to OX (U)[dx , dy ] denoted

Lv : OX (U)[dx , dy ]→ OX (U)[dx , dy ]

satisfying:

Lv is homogeneous of degree 0.

For every f ∈ OX (U), Lv (df ) = d(δv (f )).

This defines a global vector field w on TX . In fact, w = Tv where

Tv : TX → T (TX )

obtained by functoriality.
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Differential structure on P(TX )

Consequence: if v is a vector field on X , we obtain a commutative
diagram

(TX \ {0-section},Tv) //

��

(P(TX ),P(v))

uu
(X , v)

.

where φ : (X , v) 99K (Y ,w) means that φ is rational dominant morphism
from X to Y satisfying dφ(v) = w .

Since Tv is "linear on the fibres", Tv descends to a vector field on P(TX )
(the global vector fields on P1 are the images in homogeneous coordinates
of linear vector fields).

It is a geometric variant of the classical result which asserts that if
y ′′ = ay ′ + by then y ′/y satisfies the Ricatti equation:

z ′ = −z2 + az + b.

This vector field extends to P1 (by computing (1/z)′ for example).
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Invariant webs and invariant foliations

Proposition

Let v be a vector field on X and let W ⊂ Symk(Ω1
X ) be an algebraic r -web on

X and let W be the associated horizontal divisor. TFAE:

The horizontal divisor W (equivalently, all its irreducible components) is
tangent to P(v).

The web W is stable under Lv i.e. Lv (W) ⊂ W.

When these conditions hold, we say that the web (or the foliation) W is
invariant under the vector field v .
Let U |= DCF0.
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Semi-minimality

Recall that a type is semi-minimal if it is almost internal to a minimal type.

Proposition (T = DCF0)

Let v be a vector field on X and denote by p the generic type of the differential
equation (X , v).
If there are no algebraically integrable foliations on X invariant under the
vector field v then p is semi-minimal.

By geometric stability theory, if p = tp(a/C) then there always exists
a0 ∈ dcl(a,C) \ C such that tp(a0/C) is semi-minimal

Since C〈a〉 has transcendence degree two, either p is semi-minimal or
C〈a0〉 has transcendence degree one. (so assume the second case).

There exists a curve C and a vector field w on C such that tp(a0/C) is
intedefinable with the generic type of (C ,w). The germ of a definable
map sending a to a0 defines

φ : (X , v) 99K (C ,w)

Denote by F = Ker(dφ) the foliation tangent to the fibres of φ. By
definition, this foliation is algebraically integrable.

dφ(v) = w implies that the foliation F is invariant.
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Minimality and disintegration

Theorem (T = DCF0)

Let v be a vector field on X and denote by p the generic type of the differential
equation (X , v).
Assume that p is orthogonal to the constants.
If X does not admit any algebraically integrable 2-webs nor any algebraically
integrable foliations invariant under the vector field v then p is minimal and
disintegrated.

Without the assumption that p is orthogonal to the constants, a
counterexample is given by a global vector field (hence translation
invariant) on a simple abelian variety A of dimension two.

Are they essentially (up to a finite to finite correspondence) the only
counterexamples?

If w is a vector field on a curve C such that (C ,w) is orthogonal to the
constants. then set

X = S2C = C × C/ ∼ and w = v × v/ ∼ .

where (x , y) ∼ (y , x) admits an invariant algebraically integrable 2-web
and no invariant algebraically integrable foliations. (Moosa-Pillay)
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Comparison with CCM

Proposition (Prototype statement, T = CCM)

Let M be a compact complex surface. If M does not support any analytic web
then the generic type of M is minimal and locally modular.

M does not admit support analytic foliation, so in particular M does not
support any “meromorphically integrable” analytic foliation.

Like in DCF0, this implies that the generic type of M is semi-minimal.

π : TM → M do not have non-zero algebraic sections. So by GAGA
Corollary, M is not almost internal to P1 so that M is orthogonal to P1.

By Riemann existence theorem,

semi minimal + orthogonal to P1 in dimension two ⇒ minimal

Remark: If we assume orthogonality to P1, we only need to look at analytic
foliations and we don’t need to consider analytic 2-webs.
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A theorem in difference geometry

Theorem (C. Favre, J. V. Pereira, ’14)

Let σ : X 99K X be a dominant rational map with positive entropy.
Assume that there exists an irreducible 2-web W invariant under σ and that σ
does not admit any other invariant irreducible webs (in particular any foliation).
Then:

(1) The 2-web W is algebraically integrable.

(2) There exists a rational map φ : P1 → P1 such that
(P1, φ) is not conjugated to a monomial, a Chebychev polynomial or a
Lattes map.
(X , σ) is semi conjugated (by a rational map) to

S2(P1, φ) = (P1 × P1, φ× φ)/ ∼

where (x , y) ∼ (y , x).

In fact, S2(P1) ' P2.
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A Galois theoretic analysis of invariant webs

Let X be an algebraic variety and v be a vector field on X .

We have described the irreducible webs on X invariant by v as the
algebraic solutions of a Ricatti equation given by the “projectivized Kolchin
tangent bundle” over the differential field (C(X ), δv ).

We denote by G the connected component of the Galois group of this
Ricatti equation (in other words, the Galois group of this Ricatti equation
over (C(X ), δv )alg

A characteristic feature of differential algebra “over the constants” : for
every vector field v , the foliation F(v) tangent to v is tautologically
invariant under v .

Consequence (Kovacic):
G 6= PSl2(C).
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A Galois theoretic analysis of invariant webs

Proposition (T = DCF0)

Let v be a vector field on X such that F(v) is not algebraically integrable.
Exactly one of the three following cases occur:

(1) G ' Aff2(C) if and only if F(v) is the unique irreducible web invariant
under v .

(2) G ' Gm(C) if and only if there are exactly two irreducible webs invariant
under v . One of them is F(v) and the other one W is:
(2a) either a foliation,
(2b) or a 2-web.

(3) G = 0 if and only if v admits at least three invariant irreducible webs if
and only if v admits infinitely many.

This follows from arguments of Kovacic on Ricatti equations.
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Thank you for your attention!
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