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§1 Differential Algebra.

Throughout these notes ring will mean commutative ring with identity.

A derivation on a ring R is an additive homomorphism D : R — R such
that D(zy) = zD(y) + yD(z). A differential ring is a ring equipped with a
derivation.

Derivations satisfy all of the usual rules for derivatives. Let D be a deriva-
tion on R.

Lemma 1.1. For all z € R, D(z") = nz"~1D(z).

Proof.
By induction on n. D(z!) = D(z).

D(z"*!) = D(zz") = 2D(z") + 2" D(z)
=nz"D(z) + z" D(z)
= (n+1)z"D(z).

Lemma 1.2. If bis a unit of R, D(%) = %%QQ.

Proof.
D(a) = D(b- %) = bD(%) + £D(b).
Thus D(£) = 1D(a) — & D(b) = 2(a)-aD®)

examples.

1) (trivial derivation) D : R — {0}.

2) Let C* be the ring of infinitely differentiable real functions on (0, 1) and
let D be the usual derivative.

3) Let U be a nonempty connected open subset of C. Let Oy be the ring
of analytic functions f : U — C and let D : Oy — Oy be the usual derivative.
[Note: Oy is an integral domain, while the ring of C* functions is not.] Similarly
the field of meromorphic functions on U is a differential field. In appendix A,
we show that every countable differential field can be embedded into a field of
germs of meromorphic functions.

4) Let a € R. Let D : R[X] — R[X] by D(}_ a;X*) = a(}_ia; X*~1). [Note:
Ifa=1, then Dis 3%
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5) Let Do : R — R be a derivation. We form R{X}, the ring of differential
polynomials as follows. R{X} = R[Xy, X1,...]. Let D extend Dy by D(X,) =
Xny1.

We identify Xo with X and X, with X(*), the nth derivative of X.

Definition. If D is a derivation on R, we let Cr denote the kernel of D. We call
Cr the constants of R. (If no ambiguity arises we will often drop the subscript
R).

-C'is a subring of R. Moreover if b € C' is a unit in R and a € C then § is
in C. In particular, if R is a field then so is C.
-If a € C, then D(az) = aD(x), thus D is C-linear.

Our first goal is to develop the basic ideal theory for differential ideals. We
will be studying K C L where K and L are differential fields. If ¢ € L we will
want to consider the ideal of differential polynomials over K which vanish at «.

Definition. We say that an ideal I C R{X} is a differential idealif for all f € I,
D(f) el

In general if K C L and a € L then the ideal {f(X) € K{X} : f(a) = 0}
is a prime differential ideal. For f(X) € R{X}, we let (f(X)) be the differential
ideal generated by f(X). Even if f(X) is irreducible, (f(X)) may not be prime.
For example let f(X) = (X")?2—2X'. Then D(f) =2X"(X" —1) is in (f(X)),
but neither 2X” nor X" — 1 is in (f(X)).

Definition. If f(X) € R{X}\ R, the order of f is the largest n such that X ()
occurs in f. (For completeness if f f € R we say f has order -1.) If f has order

n we can write m

FX) =) a(x,x',.. . XxC=D)(x ™y
=0
where g; € R[X,X’,...,X("=V]. If g,, # 0, we say that f has degree m.
We say that f(X) is simpler that g(X) and write f < g, if either the order
of f is less that the order of g or the orders are equal and f has lower degree.

Definition. Let f(X) € R{X} have order n > 0. The separant of f is

3}
s(X) = W{")

For example if f(X) = (X")? — 2X' , then s(X) = 2X".
If f(X)=Yir09i(X,...,X"=D) (X)) then

m—1
s(X) = Y (i+ Dgiga(X,..., X"=D) (xMyi,

=0

So s(X) < f(X).
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Definition. For f(X) € R{X} let I(f) = {g € R{X} : s*g € (f) for some k}.

We will show that if R is a differential field and f € R{X} is irreducible,
then I(f) is a prime differential ideal and that every prime differential ideal is
of this form.

Lemma 1.3. I(f) is a differential ideal.

Proof.

Clearly R{X}I(f) C I(f). If s"go,s™g1 € (f), and n < m, then s™(go +
91) € (f). Thus I(f) is an ideal.

If s"g € (f), then D(s"t1g) € (f). But D(s"t!g) = (n+1)s"gD(s)+s"*1g'.
Hence s"t1g’ € (f). Thus if g € I(f), then ¢’ € I(f).

The following division lemma is central to our analysis of differential ideals.
For the rest of this section we will consider the case that is most important to
us. We assume that R is a differential field K of characteristic zero. (The next
lemma is false if K has characteristic p > 0.)

Lemma 1.4. If f is irreducible of order n and g € (f) \ {0}, then g has order
at least n and if g has order n, then f divides g.
Proof.
Let s be the separant of f. We need the following claim.
claim: We can write f) = sX(*+D 4 fi(X,..., X(*H=1)) for I > 1.
Let f =3 1o hi (X(™)i, where h; has order at most n — 1. Then

£ = 3 (RX DY ihy(X )1 x (4D
=0
= sx(m+1) + fi

where f; = 3 hi(X(™))i. Thus the claim is true for I = 1.

Given f) = sX(®+) 4 7, where f; has order at most n+1—1,1> 1, we
have fU+D) = o/ X(n+D) 4 s X(n+1+1) 4 £/ Let fiyg = f/ + 8/ XD, Then fiy,
has order at most n 41 and fU+1) = s X+ 4 £

Let g = aof +...+ap f). If k = 0, the lemma holds, so we assume k > 1.
Assume ¢ has order at most n.

Replace all instances of X("+¥) by —%. Since X("+#) does not occur in g,
and f(®) = sX("+k) 1 £, we get a new equation (after clearing denominators)

s"g=bof +...+bp_ fED.

We next replace all instances of X(+k=1) py —Jk=t ot

Continuing we find an m and ¢ € K{X} such that s™ g = cf. The degree of
s is less than the degree of f. Thus f does not divide s. Since f is irreducible,
f divides g. In particular, g has order exactly n.
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Repeating the previous proof starting with s™g, we can prove the following
lemma.

Lemma 1.5. Let f be irreducible of order n and let g € I(f) \ {0}. Then g has
order greater than or equal to n and if g has order n, then f divides g.

Lemma 1.6. Let f be irreducible of order n. For any differential polynomial g,
we can find g; of order at most n such that for some m, s™g = g, (mod (f)).

Proof. Suppose g has order n + k, where £ > 1. Suppose the lemma is true
for all h € g. As above we can find f; of order at most n + k — 1 such that
f® = sX(+k) L £ Suppose g has degree m and g = 3 in o hi(X(+5))i. Let
g1 =s"g — (f*))™h,,. Then g, = s™g (mod (f)). Moreover g; is simpler than
g (if m = 1, g1 is of lower order, otherwise it is of lower degree). Thus, by
induction on <, we are done.

Corollary 1.7. Let f be irreducible of order n. Then I(f) is a prime differential
ideal.

Proof.

Suppose ugu; € I(f). There are vg,v; of order < n and mq and m; such that
s™u; = vi(mod (f)). Thus s™*™iygu; = vovy (mod (f)). Since uouy € I(f),
"vovy € I(f). Since vov; has order at most n, lemma 1.5 implies f|vov;. Since f
is irreducible flvg or flvy. If f|vs, then s™ u; € (f) and u; € I(f).

Lemma 1.8. Every nonzero prime differential ideal is of the form I(f) for some
irreducible f.

Proof.

Let I be a prime differential ideal. Let f € I be irreducible such that there
isnog € I with g # 0 and g < f. We call f a minimal polynomial of I. We
claim that I = I(f).

Suppose g € I(f) and s™g € (f) C I. Since I is prime and s ¢ I, g € I.
Thus I(f) C I.

Let ¢ € I. Let g; have order at most the order of f and m be such that
s™g = g1(mod (f)). Let d be the degree of f. Using the division algorithm we
can write g1 = af + r, where a,7; € K(X ... X("=1)[X(™)] and r, has degree
< d. Clearing denominators, there are aj,as,r2 € K[X,...X(™)] such that r,
has degree < d, a; is of order < n and a;¢, = a2 f+r;. Since g € I and (f) C I,
g1 € I. Thus ry € I. But r; € f, so r = 0. Thus fl|aig;. Since a; has order
< n, flg1. Hence s™g € (f) and g € I(f).

Definition. RD(I), the differential rank of I, is the order of the minimal poly-
nomial of I. If I = {0}, we define RD(I) = w.

Let L/K be differential fields with « € L. We let I(a/K) denote the ideal of
differential polynomials in K {X} which vanish at a. Clearly I(a/K) is a prime
differential ideal. If I(a/K) is not {0}, we say a is differentially algebraic over K.
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Otherwise a is differentially transcendental. [Warning: differentially algebraic
does not imply algebraic in the model theoretic sense, as differential equations
usually have infinitely many solutions.] We let K () denote the differential field
generated by « over K.

Lemma 1.9. If L/K are differential fields and a € L then RD(I(a/K)) is equal
to the transcendence degree of K(a)/K.

Proof.

If I(a/K) = {0}, then K(a) is isomorphic to K(Xo, X1, X>,...), a purely
transcendental extension of K. Thus K(a)/K has transcendence degree w.

If not we can assume I(a/K) = I(f) where f is a minimal polynomial. Then
f has order RD(I) = n. Clearly a,¢/,...,a("=1 are algebraically independent
over K, so the transcendence degree is at least n. It is also clear that a(™
depends on a, ¢/, ...,a® 1) over K.

For all k > 1 we can write f*) = sX"+*  f; where f has order < n+ k
(this is the claim in the proof of lemma 1.4). Then f*) € I(f), thus f*)(a) = 0
forall £ > 1. So

f®(a) = s(a)a™*) + fi(a,..., a0,

Thus a(*t¥) depends on a,...,a(®™*=1) over K. Thus, by induction,
@,...,a(® 1) is a transcendence base for K{a)/K. So K(a)/K has transcen-
dence degree n.

Note that we have shown that in the later case
K(a) = K(a,e, ..., D)[a].
We next show differential prime ideals extend when we extend the base field.

Lemma 1.10. Suppose L/ K are differential fields. Let f € K{X} be irreducible
and let fi € L{X} be an irreducible factor of f in L{X}. Then Ix(f) =
IL(fi) N K{X}.

Proof.
Suppose f has order n. If f factors in L{X}, then f factors in
L[X,X',...,X™)]. Moreover any irreducible factor must have order n, since

whenever k C [ are fields of characteristic zero, f € k[X] is irreducible and X,
occurs in f, then X, occurs in any irreducible factor of f in I[X]. (This is an
interesting exercise in Galois theory).

Let s; and sy, be the separants of f and f,. Suppose g € IL(fi) N K{X}.
Let g1 be of order at most n such that for some m s7'g = g1 (mod (f)). Then
579 = g1 (mod (f1)) and g1 € IL(f1). Thus filg:. Since g1 € K{X}, all
conjugates of f; (over the algebraic closure of K) divide g;. Thus flg;. So
g € Ix(f).

Suppose g € Ik(f). Say s7'g € (f). Let f = fif. Since f is irreducible,
fi [fa. Since sy = fasg, + fisg,, sF9 = fi*sT. g (mod (f1)). Thus f7*g € IL(f1).
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If fo € IL(f1), then, by 1.4, f1|f2, a contradiction.
If fo & I(f1), then g € IL(f1).

Our next goal is to prove a version of Hilbert’s Basis Theorem for differential
ideals. Strictly speaking this is false. Even in K{X} we do not have ACC for
differential ideals. For example consider the ideals, Iy C I C ..., where:

I, = (X2,(X")?,...(X(™)?).

For the rings we care about we will be able to prove ACC for radical differ-
ential ideals. Recall that if I is an ideal, then /T = {a : 3n a” € I}. We say
that I is a radical ideal if I = V/T.

Let R be a differential ring.

Lemma 1.11. If I is a radical differential ideal and ab € I, then aD(b) € I and
D(a)b € I.
Proof.

If ab € I, then aD(b) + bD(a) € I. Multiplying by D(a)b we see that
D(a)D(b)ab + (D(a)b)? € I. Since I is radical, D(a)b € I. Similarly aD(b) € I.

Lemma 1.12. Let I be a radical differential ideal, let S C R be closed under
multiplication and let T = {x € R : S C I}. Then T is a radical differential
ideal.

Proof.

Clearly T is an ideal. If S C I, then, by lemma 1.11, D(z)S C I. Thus T
is a differential ideal. Suppose ™ € T'. Then for all s € S,z"s € I. In particular
for all s€ S, z"s™ € I. Since I is radical, for alls € S, zs€I. Thusz € T.

For any S C R, let {S} denote the smallest radical differential ideal con-
taining S.
Lemma 1.13. a{S} C {aS}.

Proof.
By lemma 1.12, T = {z : az € {aS}} is a radical differential ideal. Since
SCT,{S}CT.

Lemma 1.14. Let S,T C R. Then {S}{T} C {ST}.
Proof.
By the previous lemma {z : £{T} C {ST}} contains {S}.
Lemma 1.15. Let R D Q be a differential ring. If I is a differential ideal, then
VT is a radical differential ideal.

Proof.
Suppose a™ € I. We will prove by induction that a®~*D(a)?*-! € I.
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We know D(a™) € I. But D(a™) = na™~'D(a). Since Q C R, a®~'D(a) €
I, so the claim is true for k£ = 1.
Suppose a"~* D(a)?*~! € I. Then

(n — k)a”~*+tVY D(a)%* 4 (2k — 1)a~* D(a)*~2D(D(a)) € I.
Multiplying by by D(a), we see that
(n — k)a®~*+VD(a)%*+! 4 (2k — 1)a" ¥ D(a)?*~1D(D(a)) € I.

But (2k — 1)a"~*D(a)%*~1D(D(a)) € I. So (n—k)a"~*+1)D(a)2*+! € I. Since
RD Q, a"~(F+ID(a)k+! € I.
Thus D(a)?*"~! € I, so D(a) € V1.

We can now prove the relevant version of Hilbert’s Basis Theorem. We say
that a radical differential ideal I is finitely generated if there are 5 ... 3, € I such
that I = {B1,...,0n}. It is easy to see that R has ACC on radical differential
ideals if and only if every radical differential ideal is finitely generated.

Theorem 1.16 [Ritt-Raudenbush Basis Theorem]. Let R D Q be a differ-
ential ring such that every radical differential ideal is finitely generated. Then
every radical differential ideal in R{X} is finitely generated.

Proof.

Suppose not. By Zorn’s lemma there is a non-finitely generated radical
differential ideal I which is maximal among the non-finitely generated radical
differential ideals. We claim that I is prime. Suppose ab € I,a ¢ I, and b ¢ I.
Then {a,I} and {b,I} are larger radical differential ideals and hence finitely
generated. Let ¢q,...,¢r,d1,...,ds € I be such that {a,I} = {a,cy,...,c -} and
{b,I} = {b,d;,...,d,}. [In general: suppose {a,S} is generated by «; ...a;.
By lemma 1.15 {a,S} = /(a,S). Thus for each i, there are b;; € S and

i, 7ijk € R such that:
a?‘ = era(j) + Zri.j,kbgfj)'

In this case {a,S} = {a,b;;}]

Thus {a,I}{I,b} C {ab,...,c/d,} C I, by lemma 1.14. If 2 € I, then
22 € {a,I}{b,I} which is contained in {ab,...,c.d,}, a radical ideal. Thus
z € {ab,...,c ds}, so {ab,...,c,d;} = I. Since I is not finitely generated we
have a contradiction. Thus I is prime.

To complete the proof we need the following stronger form of lemma 1.6:

Lemma 1.17. Let R D Q be a differential ring and let f € R{X}\ R be
irreducible. Suppose f(X) = Y0, ai(X(™)i, where each a; has order at most
n — 1. Let s be the separant of f. For any ¢ € R{X} there is g; € R{X} such
that g; < f and for some [ and ¢, al;s'g = g;(mod (f)).

Proof. We first note that the proof of lemma 1.6 we will work since R D Q.
Thus we can find g of order at most n such that s'g = g5 (mod (f)). Using the
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standard division algorithm for polynomials we can find g; of degree < d such
that al,go = g1 (mod (f)).

We return to the proof of 1.16.

We have I a non-finitely generated differential prime ideal. By assumption
IN R is finitely generated. Let J be the finitely generated radical differential
ideal of R{X} generated by IN R. Let f(X) € I — J be of minimal order and
degree. Say f(X) = a(X™)4 + fo(X), where fo(X) < f(X). If a € I, then
fo € I, contradicting the choice of f. Thus a ¢ I.

Further, s, the separant of f, is not in I. If s € I, then, since s < f, s € J.
But then f(X) — %X(")s would be in I — J, contradicting the minimality of f.
Since I is prime as ¢ I. Thus {as, I} is a radical differential ideal extending I
and hence finitely generated. Let {as, I} = {as,c;,...,¢n}, where each ¢, € I.

Let g(X) € I. There are I, such that a's'g = g;(mod (f)), where g; < f.
Thus g; € I. Since g; < f, we must have g; € J. Thus a's'g € {J, f}. Since
this is a radical ideal, asg € {J, f}. Thus asI C {J, f}. Thus

I C I{as,I} = I{as,c1,...,cm}
C{asl,Icy,...,Icy}
- {'],f)cla"'aCM} Cc L.

If z € I, then 22 € I2. Thus 22 € {J,f,c1...,cm}. Since this is a radical
ideal, z € {J, f,c1 ...cm}. Thus I is finitely generated.

Let k£ be a . differential field. We say that X C k™ is D-closed if there are
fi,.-, fm € k{X} such that

X:{'i"EknZfl('.’f)Z"'zfm(f):O}‘

The basis theorem insures that the intersection of any collection of D-closed
sets is equal to the intersection of a finite subcollection. Thus the D-topology is
Noetherian.

The next theorem gives the differential version of primary decomposition in
Noetherian rings.

Theorem 1.19 [Decomposition Theorem]. Let R be a differential ring
with ACC on radical differential ideals. Any radical differential ideal is the
intersection of a finite number of prime differential ideals.

Proof.

Suppose not. By ACC there is a radical differential ideal I which is not the
intersection of finitely many prime differential ideals and is maximal with this
property. As I is not prime, we have ab € I,a,b ¢ I. Then {I,a} and {I,b} are
intersections of finitely many prime differential ideals.

Note that {I,a}{I,b} C {ab,I} C I. For c € {I,a}N{I,b},c? €I, soceI.
Thus {I,a}N{I,b} = I, and I is a finite intersection of prime differential ideals.



46

As usual there is a unique irredundant representation of I as a finite inter-
section of prime differential ideals. We say that a D-closed set is irreducible if
it can not be written as the union of two proper D-closed subsets. The decom-
position theorem implies that any D-closed set is a finite union of irreducible
D-closed sets.
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in Poizat’s book Cours de Théorie des Modéles.

§2 Basic Model Theory of Differentially Closed Fields.

We begin by defining the theory of differentially closed fields (DCF). Let £
be the language with binary function symbols +, -, —, unary function symbol D,
and constant symbols 0 and 1. DCF is axiomatized as follows:

i) axioms for algebraically closed fields of characteristic zero

ii) Va,y D(z +y) = D(z) + D(y)

iii) Vz,y D(zy) = zD(y) + yD(z).

iv) For any non-constant differential polynomials f(X) and g(X) where the
order of g is less than the order of f, there is an z such that f(z) = 0Ag(z) # 0.

One could also consider the theory DCF, of differentially closed fields of
characteristic p > 0. This theory is much less well behaved (see [Wood]). Hence-
forth all fields will be assumed to have characteristic 0.

Suppose K is a differentially closed field. Then as a pure field (K, +, ) is
algebraically closed. Moreover the next lemma shows that the field of constants
is also algebraically closed. To avoid confusion between the field theoretic and
model theoretic notions of “algebraic”, we say that a is strongly algebraic over
k if there is a polynomial p(X) € k[X] — {0} such that p(a) = 0. [In §5 we will
give the precise relation between algebraic and strongly algebraic.]
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Lemma 2.1. Let K be a differentially closed field. If a € K is strongly algebraic
over C the field of constants, then a € C.

Proof.

Let p(X) = Y i, b X" be the minimal polynomial of a over C. Since
p(a) = 0, D(p(a)) = 0. But D(p(a)) = (X5 (i 4 1)bit1a*) D(a). Since p is the
" minimal polynomial of a, Z:":;l(z + 1)b;41a* # 0. Thus D(a) =0,s0a € C.

Lemma 2.2. Every differential field k£ has an extension K which is differentially
closed.

Proof.

Given k let f be of order n and let g be of order < n. Let f; be an irreducible
factor of f of order n. Let I = I(f;). Then g ¢ I. Let F be the fraction field
of k{X}/I. [Note: the quotient rule gives us a way of extending a derivation on
an integral domain to its fraction field.] Let a € F' be the image of X (mod I).
Since f € I, f(a) = 0. Since g ¢ I, g(a) # 0.

Iterating this process we can build K D k a differentially closed field.

The next lemma is crucial for quantifier elimination.

Lemma 2.3. Let K_a.nd L be w-saturated models of DCF. Letae K, b € L,
k = Q(a) and I = Q(b). Suppose o : k — l is an isomorphism such that ¢(@) = b.
For all « € K there is an extension of o to an isomorphism ¢* from k(o) into L.

Proof.

Let a € K. First suppose « is differentially algebraic over k. Let f be the
minimal polynomial of I(a/k) , the ideal of differential polynomials in k{X}
which vanish at «. Say f has order N. Let g be the image of f under o. Let
T'(v) = {g(v) = 0} U {h(v) # 0 : h(X) € I{X} where h has order < N}. For any
hi,...,hn € I{X}, where each h; has order < N, we can find § € L such that
g9(B) = 0 ATThi(B) # 0. Thus by w-saturation there is 8 in L realizing I'(v).
Extend o by setting o*(a) = B. It is easy to see that I(f/1) is the image under
o of I(a/k). Thus k{a) = 1(B).

If « is differentially transcendental over k, we use w-saturation to find 8 € L,
B differentially transcendental over I. We can now extend ¢ by sending a — .

Theorem 2.4. DCF has elimination of quantifiers.

Proof.
It sufficed to show that if K,L = DCF, k C K,k C L, a €k, beK,
#(v, W) is quantifier free and K |= ¢(b,a), then L |= Jv ¢(v,a) (see [Marker] 1.5

).

Since we may replace K and L by elementary extensions if necessary, we
may without loss of generality assume that they are w-saturated. We may also
assume that k is the differential field generated by @. By lemma 2.3, we can find
B € L such that k(b) = k(B). Thus L = ¢(8,a). So L = v ¢(v,q).
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Corollary 2.5. DCF is complete and model complete.

Proof. Let K and L be models of DC'F. Then Q (with the trivial derivation)
is a substructure of both fields. Every sentence ¢ is provably equivalent with a
quantifier free sentence . But

KE¢oKEY
< QEY
@LEY
<LE?¢

Thus K = L, so DCF is complete.
Every quantifier eliminable theory is model complete.

Quantifier elimination leads to the following Nullstellensatz of Seidenberg.

Corollary 2.6 (Differential Nullstellensatz). If £ is a differential field and
¥ is a finite system of differential equations and inequations over k such that X

has a solution in some [ D k, then ¥ has a solution in any differentially closed
K Dk.

Proof.

By quantifier elimination the assertion that there is a solution to ¥ is equiv-
alent in DCF to a quantifier free formula with parameters from k. Thus if there
is any differentially closed L D k containing a solution to ¥, then every differ-
entially closed K D k contains a solution to X. But if there is any differential
field | D k containing a solution to ¥ , then by lemma 2.2 there is a differentially
closed L D I. Thus ¥ has a solution in any differentially closed K D k.

Exercise. Let K be differentially closed. Let ¥ be any set of differential poly-
nomials in X;...X,. Let V(X) = {T € K” : f(Z) = 0 for all f € £} and let
I(V)={9€ K{X1...X,}:9(Z) =0 for all T € V(X)}. Then I(V (X)) = {X}
the smallest radical differential ideal containing X.

Let’s make the quantifier elimination explicit. The atomic formulas in £
are of the form f(Z) = 0 where f is a differential polynomial. Thus by quantifier
elimination every formula ¢(7,@) over a differential field k is equivalent to one

of the form:
n m, Ty

VIA £i@ =0A \ g5 # 0],

i=1j=1 k=1
where f;j,gi; € k{X). Of course A\ g:;(¥) # 0 if and only if [[g; ;(¥) # 0.
Thus every formula is equivalent to one of the form:

n m,

VI £:.i® = 0Ag(®) #0].

i=1j=1
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We next show that there is an intimate relationship between types for DCF
and differential prime ideals. Let k be a differential field and let S;(k) be the
1-types of DCF with parameters from k. For each 1-type p(v) € Si(k). Let
I, = {f € k{X}: “f(v) = 0” € p}. It is easy to see that I, is a prime differential
ideal.

Lemma 2.7. p— I, is a bijection from Si(k) to the space of prime differential
ideals over k{X}.

Proof.
Suppose p,q € S1(k) and p # q. Then there is a formula ¢(v,a) € p\ q. By
quantifier elimination there are differential polynomials f; ;, g; such that

$(v,3) & \/I/\ fii(v) = 0Agi(v) # 0].

Thus ¢(v,@) € p if and only if for some ¢ all f;; € I, but g; ¢ I,. Since
é(v,@) € p— q, we must have I, # I,. Thus p — I, is one to one.

For any differential ideal I, let K be a differentially closed field containing
the fraction field of k{X}/I. Let p be the type over k realized by the image of
the indeterminate X. Then I, = I, so p — I, is onto.

For p € Si(k) we let RD(p) = RD(Ip).

Let K D k. Ifa € K, f € k{X}, and f(a) = 0, we say that « is a generic
solution of f, if and only if for all ¢ € k{X} if g < f then g(a) # 0. For f
irreducible, « is a generic solution of f if and only if I(a/k) = I(f).

Definition. Let k be a differential field. We say that K D k is a differential
closure of k if K |= DCF and for any L | DCF, if L D k, then there is an
embedding ¢ : K — L.

Of course DCF is a model complete theory. Thus any embedding o : K — L
is necessarily an elementary embedding. Therefore a differential closure of k is a
model of DCF which is prime over k. Model theoretic considerations will allow
us to prove that every k has a differential closure.

Recall that a theory T is w-stable if for any M | T and A C M, |S,(4)| =

Lemma 2.8. DCF is w-stable.

Proof.

Let k be a differential field. We must show that |Sy(k)| = |k|. But there is
a bijection between S; (k) and the space of differential prime ideals on k{X}. By
lemma 1.8, each prime differential ideal is of the form I(f) for some f € k{X}.
Thus |S1(k)| = |k{X}| = |K|.

We may now appeal to the following important basic results from the model
theory of w-stable theories. If M D A we say that M is prime over T if and only
if for any N |= T with N D A, there is an elementary map j : M — N fixing A.
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We say that M is atomic over A if and only if every @ € M realizes an isolated
type in S, (4).

Theorem 2.9 Let T' be an w-stable theory.

a) (Morley) For any A a substructure of a model of T', there is M = T,
such that M D A and M is prime and atomic over A.

b) (Shelah) If M and N are prime over A, then there is an isomorphism
0 : M — N, which is the identity on A.

Corollary 2.10. If k is a differential field then k£ has a differential closure
K. If K and L are two differential closures of k, then there is an isomorphism
o : K 2 [ such that o is the identity on k. Moreover K is atomic over k.

Excercise. a) Show that a type p € S;(k) is isolated if and only if there is g of
order less than RD(I,) such that I, is the only prime differential ideal containing
the minimal polynomial of I, and not containing g.

b) Show directly that the isolated types are dense. [hint: For ¢(v,a), let
p € S1(k) be such that RD(p) is minimal. Let f be the minimal polynomial of
I,. Show that ¢(v,@) A f(v) = 0 isolates p.]

[Note: The above arguments can be used to show that DCF, has prime
models even though DCF, is not w-stable.]

The following lemma will be useful when we begin differential Galois theory.

Lemma 2.11. Let k be a differential field and let K be the differential closure
of k. Then Ck is algebraic over Cy. In particular, if Cy, is algebraically closed,
then Cx = Ck.

Proof.

Let a € Ck. Since K is atomic over k, p = t(a/k) is atomic. Clearly
“D(v) =0” € p. Thus RD(p) < 1.

If RD(p) = 1, then, by the excercise above, there must be f(X) of order 0
(ie. f € k[X]) such that “D(v) = 0A f(v) # 0” isolates p. But there are ¢ € C;
such that f(c) # 0 so this is impossible. Thus RD(p) = 0.

Thus there is f(X) € k[X] such that f(a) = 0. We claim that a is strongly
algebraic over Cx. We may assume that f is the minimal polynomial of a over
k. Thus f(X)=Yi_, b X, where b, = 1. Since f(a) =0, D(f(a)) = 0. But

D (f(a)) = D(a) i:(i +1)bip1a* + ) D(bs)a’.
1=0 =0

Since D(a) = 0, D(f(a)) = S D(b;)a’. Since b, = 1, S0 D(bi)a* = 0.
Since f is the minimal polynomial of a over k, we must have all D(b;) = 0. Thus
all of the b, € C. So a is strongly algebraic over Cy.

The next lemma is another useful consequence of the fact that the differen-
tial closure of K is atomic over K.



51

Lemma 2.12. Let K be a differential field. Every element of the differential
closure of K is differentially algebraic over K.

Proof.

Suppose a is in the differential closure F' of K and a is differentially tran-
scendental over K. Let 9(v) isolate tp(a/K). Since a satisfies no differential
polynomial equations over K, ¥(v) we can assume that 9(v) is “f(v) # 0”
for some f € K{X}. Suppose f has order n. There is b € F such that
b+ = 0 A f(b) # 0. Clearly a and b have different types over k, contra-
dicting the fact that 1 isolates the type of a over K.

Definition. A type p(v) € S(A) is definable if for each formula ¢(v,w) there is
a formula d¢(w) with parameters from A such that for all @ € A ¢(7,3@) € p if
and only if d¢(a).

In a stable theory all types are definable. This has a very simple proof for
differentially closed fields.

Exercise. Let k be a differential field and let p € S,(K). Show that p is
definable. [Hint: Use the Ritt basis theorem to find fi,..., fn € k{X} such
that {g : “9(¥) = 0” € p} is the smallest radical differential ideal containing
Firer fm. For h € k{X}, if $(7) is “g(T) = 07, then dg is ¥z (A £;(7) = 0 —
g(v) = 0). Use quantifier elimination to get definitions of all formulas.]

We conclude this section by proving that differentially closed fields satisfy
uniform bounding.

Theorem 2.13. Let K | DCF. Suppose é(z1,...,Zm,¥1,---,¥) is an L-
formula then there is an N such that for any @ € K' if {Z : #(z,a)} is finite then
it has cardinality at most N.

Proof.

We first note that it suffices to prove this for m = 1. If we can find uniform
bounds for ¢;,...,¢,, then we can find uniform bounds for \/ ¢;. Thus by
quantifier elimination it suffices to consider

¢(z,9) = \ fi(2,9) = 0A g(z,9) # 0.
Let ¢(z,7,v) be the formula
N 5i(z9) = 0A(z - v)g(c,7) = 1.
Suppose @ € K' and

{z: \di(z, @)} = {b1,...,ba}.
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Then the collection of formulas {¥(z,d,b,),...,%(z,d, b,)} is inconsistent, while
every proper subset is consistent. This shows that theorem 2.13 is a consequence
of the following lemma.

Lemma 2.14. Let K be a differentially closed field. Let f1,..., f, € K{X,Y}
and let ¢(Z,7) be the formula A f;(Z,7) = 0. There is a number s such that

if {¢(%,%1),...,4(Z,Cn)} is inconsistent, then some subset of size at most s is
inconsistent.
Proof. )

Let my,...,mpr be a listing of monomials in X,'(‘1 ) containing all monomi-

als occuring in any f; (in particular assume m; = 1). Thus we can find a; ;
differential polynomials in Y such that f; = Zﬁl a; jm;.

Suppose N > M + 2. We will show that for any ¢,...,¢n, if {¢(7,) :
1 < i < N} is inconsistent, then there is a subset of size M + 1 which is
inconsistent.

Consider F;(Z1,...,Zm,9) = Y ai;jZ; . For each ¢, let o be the system
of linear equations

n
NF(Z5)=0
i=1
and let
N
Y= /\ gj.
j=1
Using elementary linear algebra we see that if ¥ is inconsistent, there are
1,...,ipm41 such that /\j:l'1 0i, 1s inconsistent. In this case surely
/\]M;l'1 #(7,¢;,) is also inconsistent.

On the other hand if ¥ is consistent there are ¢;,...,i3 such that the
solutions to X are exactly the solutions to /\]I‘i1 0i,. Suppose {§(Z,¢;,) : j =
1,..., M} is consistent. Let @ be a solution. Building up monomials from @ we
get (1,0, ...,0m) asolution to /\j‘i1 0;;. But then (1,52,...,8x) is a solution
to X and @ is a solution to /\jv=1 #(T,¢;).

Thus if every M + 1 element subset of {¢(Z,¢;) : j = 1,..., N} is consistent
then the entire set is consistent.

Lemma 2.14 is a special case of a more general fact.

Definition. Let T be a first order theory. We say that ¢(Z,@) has the finite
cover property if for arbitrarily large N there are ay,...,an such that {¢(Z,a;) :
i < N} is inconsistent with T while every subset of size N — 1 is consistent. We
say that 7' has the finite cover property (FCP) if there is a formula with the
finite cover property. Otherwise T is said to be NFCP.

In T is unstable then T" has the finite cover property. Both uniform bounding
and lemma 2.14 are weak forms of NFCP. Poizat showed using the method of
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pairs that the theory of differentially closed fields has NFCP. In fact, by a result
of Shelah, if T' has uniform bounding and elimination of imaginaries (which we
will prove for DCF in the next chapter), then T" has NFCP.

References

The first work on the model theory of differentially closed fields was done
by Robinson, though this work was influenced by earlier work of Seidenberg.
Blum (see [Blum]) considerably simplified Robinson’s axioms and was the first
to use stability theoretic methods. The proof of uniform bounding given here is
due to van den Dries and works equally well for separably closed fields.

The model theoretic results of Morley and Shelah can be found in Sacks’
Saturated Model Theory or Lascar’s Stability in Model Theory.

Differentially closed fields of prime characteristic are also interesting. They
have a stable non-superstable theory and we can show existence and uniqueness
of differential closures. See [Wood] for more information on DCF,.

§3. Elimination of Imaginaries

Shelah introduced the structure M®9 obtained by adding imaginary ele-
ments which are names for equivalence classes of (-definable equivalence rela-
tions. Imaginaries smooth out many arguments from stability theory. In some
cases we can show that the introduction of imaginary elements is unnecessary.
Elimination of imaginaries turns out to be one of the central ideas in the model
theory of fields. In particular if we can eliminate imaginaries then we may rep-
resent definable quotients as definable objects.

We will show that differentially closed fields have elimination of imaginaries.
We first work in a general setting.

Definition. Let T be any theory and let M be a suitably saturated model of
T. Let p be a (possibly incomplete) type over M. We say that B is a canonical
base for p if B is definably closed and whenever ¢ is an automorphism of M, o
fixes the realizations of p (setwise) if and only if it fixes B pointwise.

Since we do not require p to be complete it makes sense to talk about
canonical bases for formulas.

Lemma 3.1. Suppose B is a canonical base for ¢(7,@). Then there is a formula
$(7,@) and b € B such that ¢(v,a) — ¥(7,b) and %(7,5) ¥ %(7,5) for all
b 5.
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Proof.

Let T'(7) = {¢(7) : ¢ has parameters from B and ¢(7,a) — ¥(7)}. We will
show that I'(7) — ¢(7,@). Suppose not. Then by saturation there is ¢ € M such
that I'(¢) and —¢(c,@). If t(¢'/B) = t(¢/B), then there is an automorphism of M
fixing B and sending © to ¢’. Since any automorphism which fixes B normalizes
#(v,@), we have —¢(c’,a). Thus ¢(¢/B) — —¢(7,a). Hence there is a formula
6(v) with parameters from B such that §(7) € t(¢/B) and 6(7) — —~¢(7,a). But
then -6(7) € T, contradicting I'(¢). Thus I'(7) — ¢(7,@) and by compactness
there is a formula t(7, ) with b € B such that ¢(7,@) « 1o(7, b). (Here we have
just reproven the well known fact that a set X is definable from A if and only
if in any saturated enough model every automorphism that fixes A, normalizes
X).

If b and b realize the same type over the empty set then there is an auto-
morphism ¢ taking b to b'. Since this automorphism does not fix B, it does not
normalize ¢(7,a). Thus ¥o(7,5) # %o(7,5). Thus there is 8(w) € (), such
that

0(€) AT# b — (%o(7,5) # (¥0(7,7)).
Let %(7,W) = ¥o(v, W) A ().

In particular the canonical base for a formula will be the definable closure
of a finite set.

Definition. A theory T admits elimination of imaginaries if every formula
#(7,a) has a canonical base.

The next lemma gives the connection between elimination of imaginaries
and equivalence relations.

Lemma 3.2. Suppose T" admits elimination of imaginaries and has two constant
symbols. Let M = T and let E be a @-definable equivalence relation on M™.
There is a 0-definable f : M™ — M™ such that zEy & f(z) = f(y).

Proof.

By elimination of imaginaries and 3.1, for each formula ¢(7,@), there is a
formula 7(7, @) and a unique b such that ¢(7,@) < v¥g(7,5). By compactness
we can find ¥y, ..., %, such that for all @ there is an i and a unique b such that
#(%,@) — 9;(v,b). By the usual coding tricks we can reduce to a single formula
% (a sequence made up of the distinguished constants is added to the witnesses
b to code up the least i such that v; works).

To prove the lemma let ¢(7, @) be TEW and let f be the functions @ ~ b,
where b is unique such that TET < ¢(7, b).

The next lemma gives a test for elimination of imaginaries. We say that
B is a canonical base for a finite set of types if and only if an automorphism
permutes the types if and only if it fixes B.
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Lemma 3.3. Let T be an w-stable theory and let M |= T be suitably saturated.
If every finite set of conjugate complete types over M has a canonical base, then
T admits elimination of imaginaries.

Proof.

For any formula ¢(Z,7), let E4(y,%Z) & VZ (¢(Z,7) < ¢(%,Z)). An auto-
morphism of M fixes ¢(%, @) if and only if it preserves the Ey-class of @. Let
P1,---,Pn be the global types of maximal rank that contain Ey(7,a).

We can partition {p;, ..., p,} into finitely many conjugacy classes. For each
class we can find a canonical base B.

Let A be the union of the canonical bases. Clearly an automorphism per-
mutes the p; if and only if it fixes A. An automorphism of M permutes py,...,p,
if and only if it fixes the Ey class of @. Thus A is a canonical base for ¢(z,a).

Elimination of imaginaries for algebraically closed fields, differentially closed
fields and separably closed fields can be proved using the following classical
theorem from algebraic geometry.

Definition. Let K be a field and let I be an ideal in K[X]. We say that k is a
field of definition for I if I is generated by polynomials in k[X].

Theorem 3.4. Every ideal I in K[X] has a unique smallest field of definition
k. Any automorphism of K which fixes I fixes k pointwise.

Proof. Let M be a basis of monomials for K[X]/I as a vector space over K.
Each monomial u € K[X] can be written as ) a,;m; + g, where a,; € K,
m; € M and g, € I.

Let k be the subfield of K generated by all the a, ;.

For any f € K[X], f can be written as }_ b,u, where each u is a monomial.

Thus
F=3 bau=) bu(u=) aym)+ D 6D auimi)
= Z bu(u — Z au,,-m;) + Z c;m;.

If f is in I, then, since each u — ), ay ;m; is in I and the m; are a basis for
K[X]/I, each of the ¢; = 0. Thus the u — )_ ayim; generate the ideal I, but
U=, ayim; € k[f] So k is a field of definition for I. o

Suppose [ is a second field of definition for I. Let fi,..., f; € {[X] generate
I. For each monomial u, there are g, 1,...,gu,, In K[X] such that u—Y" ay ;m; =
Y gu,ifi. Viewing the a,; and g, ; as variables, we get a system of linear equa-
tions over I{[X]. This system has a solution in K and hence in I. But then the
m; form a basis for K[Y]/I, so if u — ) cyim; € I we must have cy; = ay;.
Thus k C I.

Let a be an automorphism of K fixing I. For each monomial u, a(u —
Y auimi) = u— 3 o(ay,;)m; € I. Again since the m; form a basis for K[X]/I,
we must have a(ay,i) = ay,;. Thus o fixes k.
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Corollary 3.5. Let {I,...,I,} be a set of conjugate prime ideals in K[X].
There is a subfield k£ such that if @ is an automorphism of K, a permutes
I,...,I, if and only if « fixes k pointwise.

Proof.

Let I = (1;. Since the I; are conjugate, this is an irredundant primary
decomposition of I. Let k be the field of definition of I. Any automorphism
of K which permutes the I; fixes I and hence fixes k pointwise. On the other
hand, if « fixes k pointwise, o fixes I. Hence by the uniqueness of primary
decomposition (there is a unique way to write a radical ideal as an intersection
of prime ideals), o must permute the I;.

We next give a version for differential fields.

Corollary 3.6. Let {I,...,I,} be a set of conjugate differential prime ideals
of K{Xi,...,Xm}. There is a subfield k¥ C K such that an automorphism of K
permutes the ideal I; if and only if it fixes k pointwise.

Proof.
Let J = (1I;. J is a radical differential ideal. Thus by the Ritt basis
theorem it is the radical of a finitely generated differential ideal. Let fy,..., f,

be such that J = {fi,...,f;}. There is an N such that all f; € K[X; @)
m,j < N]. Let Jo=JN K[X,(’) 11 < m,j < NJ]. Let k be the field of deﬁmtlon
of Jy. Clearly any automorphism of K fixes J if and only if it fixes Jg if and only

if it fixes k pointwise. By theorem 1.19 and the uniqueness of the decomposition
for radical ideals, an automorphism fixes J if and only if it permutes the I;.

Theorem 3.7. The theory of algebraically closed fields and the theory of dif-
ferentially closed fields admit elimination of imaginaries.

Proof.

a) algebraically closed fields:
Let K be algebraically closed. For p € S,(K), let

I = {f(X) € K[X1,..., X,] : “f(7) = 0” € p}.

This map is a bijection between n-types and prime ideals in K[X]. If p1,...,p,
is are conjugate complete types, we get a canonical base for the set by taking
the field of definition for I,,,..., I, given by 3.5. By lemma 3.3, the theory has
elimination of imaginaries.

b) differentially closed field:
Similar using 3.6.



57

References

All of the material on elimination of imaginaries is due to Poizat. It was
first proved in [Poizat 3], though our treatment here more closely follows that in
Cours de Théorie des Modéles. A different proof of elimination of imaginaries
for algebraically closed fields is given in §4 of [Marker].

The proof given here on the existence of fields of definition for ideals is from
Lang’s Introduction to Algebraic Geometry.

§4. Linear Differential Equations

In this short section we will review some of the basic theory of linear differ-
ential equations. This will be used in our analysis of ranks in §5.
Let k be a differential field.

Definition: We define the Wronskian of X, ..., X, to be the determinant

Xo X1 ... X,
X} X; ... X!
W(Xo,.... Xa)=| . 7
xM oxm o x)
Lemma 4.1: Let zg,...,z, € k, then W(zo,...,2z,) = 0 if and only if
zg,...,z, are linearly dependent over C}.
proof:

(<) Suppose ¢y, ...,cn € Cy are not all zero and Y ¢;z; = 0. Taking the
derivative: 0 = D(3_ ¢;zi) = ) ciz}. Continuing we see that

z;
5 =0.
e (zﬁ"))

Since the columns of the matrix are linearly dependent, W(zo,...,z,) = 0.
(=) We proceed by induction on n. Suppose W(zq, ..., z,) = 0, then there
are a; € k, not all zero such that

Ty
Za; ( ) =0.
:cS")
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Without loss of generality we assume that ap = 1. By induction we may assume
that W(z1,...,2,) # 0. Thus 2§ + 7 aigl?) = 0 for each j < n. Taking
the derivative we see that

n n
2+ +3 a2 + 3 D(a)ad) = 0.

i=1 i=1
Thus
n i
i=1 zg"‘l)
But then the columns of the Wronskian determinant for z1,...,z, are linearly

dependent unless all D(a;) = 0.

Let L(X) = X(") + E::ol a; X®, where ag, ...,an_1 € k. We consider first
the homogeneous linear equation L(X) =0

Lemma 4.2: If zq,...,z, € k are solutions of L(X) = 0, then zo,...,z,
are linearly dependent over Cj.
proof:
Zo Z oee T,
z ] .. z,
W(:z:o...:cn)z . . . . =07
—Ea,‘:cg) —Ea;xgi) —Za;:cs,i)

as the rows are linearly dependent over k.
Let K D k be differentially closed.

Lemma 4.3: In K there are 21, ..., z, linearly independent solutions to L(X) =

0.

proof:

Given z1,...,z, withm < n. We can find &,,4+1 € K such that L(zp41) =
0 but W(z1,...,2m+1) # 0. (W(z1,...,Zm+1) has order m so this system can
be solved in any differentially closed field.)

It is also easy to see that if z;,...,z, are solutions to L(X) = 0. Then
L(>" ciz;) = 0 for any constants ¢y, ...,c,. Summarizing:

Theorem 4.4: If K D k is differentially closed then there are z,,...,z, € K
which are linearly independent over Ck such that the solution set for L(X) = 0
is exactly the span of z1,...,z, over Ck.

We call {z;...z,} a fundamental system of solutions to L(X) = 0.
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If b € K and yo,y; are solutions to L(X) = b, then L(yo — y1) = L(yo) —
L(yy) = 0. Thus if y is a fixed solution to L(X) = b, then every other solution is
of the form z +y where z is a solution to L(X) = 0. In particular if z;,...,z, €
K is a fundamental system of solutions to L(X) = 0 then {y+_ ciz; : ¢; € Ck}
is the set of solutions to L(X) =b in K.

Definition: Let K/k be differential fields. We say that K is a Picard- Vessiot ez-
tension of k if there is a linear differential equation L(X) = 0 and {z1,...,zn} C
K afundamental system of solutions such that K = k(zi,...,z,) and Cy = Ck.
We say that K/k is a Picard-Vessiot extension for L.

The following theorem of Kolchin follows easily from the construction of
differential closures.

Theorem 4.5: Let k be a differential field with C}, algebraically closed and let
L(X) = 0 be a homogeneous linear differential equation over k. There is K/k a
Picard-Vessiot extension for L. Moreover K is unique.

proof:

Let F be the differential closure of k. By lemma 2.13 Cp = C;. By theorem
4.4 we can find z;,...,z, € F a fundamental system of solutions for L(X) = 0.
Thus K = k(z1,...,2n) is a Picard-Vessiot extension of k.

Suppose K is a second Picard-Vessiot extension of k. Let F; be the differ-
ential closure of K;. By lemma 2.12 Cp, = Ck, = Ck.

Since F' is the differential closure of k, we can embedded F' in F;. Let
Y1...yn be a fundamental system of solutions of L(X) = 0 such that K; =
k(y1 ...yn). But then each z; is in the span of (y1,...,yn) over Ci and each y;
is in the span of (21 ...z,) over C;. Thus K = K;. Thus L(X) = 0 determines
a unique Picard-Vessiot extension of k.

References

Most of the material in this section can be found in any basic differential
equations text (for example [Hirsh-Smale]). Kolchin’s theorem on Picard-Vessiot
extensions is in [Kolchin 1].
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85. Types and Ranks in Differentially Closed Fields

Throughout this section we work inside K a very saturated differentially
closed field.

Recall that a is algebraic over a set B if and only if there is a formula ¢(v, W)
and b € B such that ¢(a,b) and {z : ¢(z,b)} is finite. We say that a is strongly
algebraic over B if a is a zero of an ordinary polynomial with coefficients in the
subfield generated by B. For any b, D(b) is algebraic over b but not necessarily
strongly algebraic over b. The next lemma sorts out the relationship between
these notions.

Lemma 5.1: Let k be the differential field generated by B. Then a is algebraic
over B if and only if it is strongly algebraic over k.

Proof:

Suppose a is algebraic over B. Consider I = I(a/k). If RD(I) = 0, then
a is strongly algebraic over k. Suppose RD(I) > 1. Let f(X) be the minimal
polynomial of I. Let K be the differential closure of k. Let f; € K{X} be an
irreducible factor of f. Then f; and f have the same order. By saturation there
is b € K such that I(b/K) = I(fi). By lemma 1.10, I(b/K)Nk{X} = I. Thus
b and a realize the same type over k. But b ¢ K, while, since a is algebraic over
k, anything with the same type over k must be in the differential closure K, a
contradiction.

The other direction is obvious.

Exercise. As a corollary show that the definable closure of B C K | DCF is
just the differential field generated by B.

We next give a concrete algebraic characterization of forking for one types.
Suppose K C L, ¢ € S;(K), p € S1(L) and ¢ C p. We will show that p forks
over K if and only if RD(p) < RD(g). We begin by recalling some basic facts
and definitions from stability theory. [Alternatively, the reader could just take
this as the definition of forking.]

Definition: Let p € S1(k). We say that ¢(v, W) is represented in p if and only
if for some @ € k, ¢(v,@) € p.

We say that ¢ O p is an heir of p if every formula represented in ¢ is
represented in p.

If K = DCF and L D K, then any p € S;(K) has a unique heir in S;(L).
We use the following as our definition of forking.

Definition: Let k¥ C I, p € Si(k), ¢ € Si(I) and p C ¢q. We say that ¢ does
not fork over k if for all M, N = DCF such that k C M, M Ul C N, there is
p1 € S1(M), ¢1 € S1(N) such that p C py, ¢ C g1 and ¢, is the heir of p;.

We will also use the following lemma.
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Lemma 5.2: Let k,l, p, q be as above. Suppose for every K = DCF with{ C K
there is p; € S1(K) such that p; D p and for all ¢; € Si(K), if ¢; D g, then ¢;
represents a formula not represented in p;. Then ¢ forks over k.

We can now give our characterization of forking.

Theorem 5.3 Let k C [ be differential fields, let p € S1(k),q € S1(!) and p C g.
Then g forks over k if and only if RD(q) < RD(p).

Proof:

Suppose RD(q) < RD(p). Let K = DCF, with K D l. Let f be the
minimal polynomial of I,. Let fi € K{X} be an irreducible factor of the same
order. Let p; € S1(K) be the type of a generic solution of f;. Then I, = I(f1)
and I(f;) Nk{X} = I(f), so p C p1. Then RD(p;) = RD(p). Let ¢; € S1(K)
be any extension of ¢. Since ¢ contains some equation of order less than RD(p),
¢1 represents a formula not represented in p; (namely a formula asserting that a
non-trivial differential polynomial of order less than RD(p) vanishes). Thus by
lemma 5.2, ¢ is a forking extension of p.

Suppose RD(p) = RD(q). Let K,L = DCF with K D kand L D IUK.
Let f be the minimal polynomial of I, and g be the minimal polynomial of I,.
Then g|f (by lemma 1.4). Let g; be an irreducible factor of g in L{X} of the
same order and let ¢; be the type of a generic solution to g;. Then p C ¢; and
RD(q1) = RD(p). Let p; be the restriction of ¢; to K. It suffices to show that
¢1 is the heir of p;.

Let f; be the minimal polynomial of p;. Then f; is irreducible in K{X}
and remains irreducible in L{X}. But since fi € I(91), 91|f1. Thus g; = afy
for some a € L. Without loss of generality, we may assume that g; = f.

Let ¢(v,@) be a formula in ¢;. By quantifier elimination, there is a differ-
ential polynomial h(v,@) of order < RD(q;) such that

DCF F (fi(v) = 0 A h(v,@) # 0) — ¢(v, ).

But f1(v) = 0 € p; and h(v,b) # 0 € p; for any b. Thus ¢(v,b) is represented in
p1. Thus ¢ is the heir of p; and ¢ is a nonforking extension of p.

Exercise: For n-types we can give the following characterization of forking. For
p € Sp(K). Let K be a differentially closed field, p(Z) € S,(K), and k¥ C K.
Then p does not fork over k if and only if V/(I,;) is an irreducible component

of V(I,), where V(I) = {Z: f(z) = 0 for all f € I}.

We now define several notions of rank.

a) U-rank:

Let p € Si(k). We say RU(p) > a + 1 if and only if there is ¢ a forking
extension of p with RU(¢q) > «. For # a limit ordinal RU(p) > B if and only if
for all @ < 3, RU(p) > a. In particular RU(p) = 0 if and only if p is algebraic.
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b) Morley rank:

Let p € S1(k). For B a limit ordinal RM(p) > B if and only if for all & < 8,
RM(p) > . We say RM(p) > a+1if and only if for any K D k,if K = DCF,
then p is a limit point of the types ¢ € S1(K) with RM(q) > «a.

If ¢ is a forking extension of p then RM(q) < RM(p). Thus RM(p) >
RU(p).

c) depth:

For P a differential prime ideal in k{X}, let the depth of P be the largest
N such that there are differential prime ideals P C P, C P,... C Pn.

We can define RH(p) to be the supremum of the depths of differential prime
ideals P C K{X} where K D k and PNk{X} = I,. [Note in [Poizat 2] there
are three possibly inequivalent definitions of depth. Poizat refers to this notion
as “height” though we find “depth” more descriptive.]

Lemma 5.4 Let p € S;(k). Then RU(p) < RM(p) < RH(p) < RD(p).

Proof:
1) We always have RU(p) < RM(p).

2) We claim that for any differentially closed field K the depth of a differ-
ential prime ideal is at most RD(p). Suppose Py C P; are differential prime
ideals. Let f; be the minimal polynomial of P;. If the order of f; is equal to the
order of fy then f; divides fy. Since P, is prime this contradicts the fact that
fo is the minimal polynomial of Pj.

3) We claim that RM(p) < RH(p). It suffices to prove this for types over
a suitably saturated K |= DCF. In this case RM(p) > a+1lifandonly if pis a
limit point of the types of Morley rank at least a.

Let D"(K) be the types of rank at least n. By induction, if p € D"(K),
then RH(p) > n. Suppose p € D"(K) and I, has depth n. Let f be the
minimal polynomial of I, and let s be the separant of f. Suppose ¢ € D"(K)
and “f(v) = 0As(v) #0” € ¢q. Then I, D I,,. Since, I, has depth n and I, has
depth at least n, we must have p = ¢. Thus “f(v) = 0 A s(v) # 0” isolates p in
D™*(K) so RM(p) = n.

Note in particular that p is an algebraic type if and only if RU(p) =
RM(p) = RH(p) = RD(p) = 0. This yields a simple but useful corollary.

Corollary 5.5: If RD(p) = 1, then RU(p) = RM(p) = RH(p) = 1.

In algebraically closed fields there are analogous notions of rank: U-rank,
Morley rank, depth and Krull dimension (transcendence degree) and these no-
tions are all equal.

We next argue that the constant field of a differentially closed field is a pure
algebraically closed field.
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Lemma 5.6 Let K be a differentially closed field. Suppose A C Ck is K-
definable. Then A is definable in the pure field (Ck,+, ).

Proof:

By quantifier elimination, it suffices to prove this for sets of the form f(Z) =
0, where f € K{X}. Say f(X) = g(X) + h(X), where 9(X) € K[X], (X) €
K{X} and every monomial in h involves some Xi(] ) where j > 1. Thus for
T € Ck, h(Z) = 0. Thus without loss of generality the definable set A is just
the points in Cx which are solutions to a polynomial equation over K.

By definability of types (in the theory of algebraically closed fields), if B C
K™ is definable in the pure field K, then Ck N B is definable in the pure field
Ck. Thus our set A is definable in the pure field Ck.

Corollary 5.7: If p € S,(K) is a type of an n-tuple of constants, then RU(p)
is equal to the transcendence degree of K(@)/K where @ realizes p.

t

Corollary 5.8: If p is the type of a generic solution of an n*h order linear

differential equation L(X) = 0, then RD(p) = RU(p) = n.

Proof:

Let RD(p) = n. Let K |= DCF with L(X) € K{X}. Let z,...,z, € K be
a fundamental system of solutions for L(X) = 0. There is a definable bijection
between solutions to L(X) = 0 and Cg. Thus the rank of the set of solutions
is equal to the rank of C”. But RU(C™) is the same as the rank computed in
the pure algebraically closed field. For a generic solution, ¢ are algebraically
independent, thus RU(p) = n.

Corollary 5.9. If p is the type of a differential transcendental, then RU(p) =
RD(p) = w.

Proof.
For each n, p has a forking extension where for some new element a we look
at the generic solution of X(®) = a. This is a type of U-rank n.

Corollary 5.10 DCF has Morley rank w + 1.

We next give two bad examples. The first shows that it is possible to have
RM(p) = 1 with RH(p) = 2. In the second we show that it is possible to have
RH(p) =1 and RD(p) = 2.

Open Problem. Do we always have RM(p) = RU(p)?

We first give a non-linear example where U-rank is equal to the differential
rank. Let f(X) € C[X] be a polynomial with constant coefficients and consider
the differential equation X” = X’ f(X). Let g(X) € C[X] be a primitive of f,
that is d%-‘% = f. Let K be a differentially closed field and let p be the type of
a generic solution of X” = X'f. Suppose FF D K and let ¢ € Cr — Cg. Let ¢
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be the type of a generic solution to X’ = g(X) + ¢. It is easy to see that ¢ is a
forking extension of p and RD(q) = 1. Thus RU(p) = RD(p) =

Consider next the differential equation X" = X " If we apply the same ideas
we are tempted to say that for ¢ a new constant any solutlon to X' =In(X)+cis
a solution to the original equation. This does not work since the second equation
is not an algebraic differential equation and hence does not make sense over an
arbitrary differential field. We will see that in fact the type of a generic solution
to X" = Jf( has Morley rank one.

We first argue that this type has depth two. Let Py be the ideal I(X X" —X")
and let P, = I(X'). Clearly if X’ = 0, X” = 0. So XX” — X' = 0. Thus
Py C P,. Further for any constant ¢, I(X — ¢) D Py, thus Py has depth at
least two. But the depth of Py is bounded above by RD(Py) = 2. Thus Py
has depth two. Lemma 5.12 shows that I(X’) is the only depth one prime ideal
containing X X" — X’. Before that we give a simple lemma about differentiating
polynomials.

Definition. Suppose f(X) € K[X]. Let f*(X) € K[X] be the polynomial
obtained by differentiating the coefficients of f. That is if f(X) = ) aim,
where m; is a monomial in the various X,-(’ ), then f*(X) =3 D(a;)m;.

Lemma 5.11. For f(X) € K[X], D(f(X)) = f*(X)+ &X'
More generally: If f(X) € K[X,X'...X®)], then

D(f)= Z axo)X('“) + .

Proof.
Let f(X) =Y a;X*'. Then:

D(f(X)) =) (D(a:)X* +ia; X*~1X")
= Z D(a,-)Xi + X' Z ia,-X“l

' Of
=X+ X35

The general case can be proved inductively in a similar manner.
Lemma 5.12. Let f(X) = XX" — X'. Suppose g(X) is irreducible of order
one and f € I(g), then X' € I(g).

Proof.
Let g(X) = 2N, an(X)(X)", where a, € K[X], N > 0 and ay # 0.
Then, by lemma 5.11,

D(g(X)) = Zan(x % +Z Oan (xy1 4 X"'3 nan (X1,
n=0

n_.O
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Let

A0 = 3 nan(X) + x<z a(X)" + Z 9an xryn),

n=0

Consider X D(g(X)). Substituting % for X", we see that XD(g(X)) =
fi(mod (f)). Since D(g(X)) and f(X) are in I(g), we must have f; € I(g).
Since f; has order one, ¢ must divide f;.

The leading term of f; is X a—"N-X N+1 " while the leading term of g is ay X’ N
Thus for some A € K we must have X %—“f- = Aan. Suppose ay = Y iv, biXE.
Then X—%—“)?L >-ib;X?. Then Ab, = mby,, so A = m. It is then easy to see
that for all i < m, b; = 0. Thus ay = b, X™. Replacing g by ;- lf necessary,
we may assume that ay = X™.

case 1. m = 0.
In this case ay =1 a.nd f1 has degree N.
The coefficient of X'~ in f; is
fan—_1 Oan_1

Nay+ay X+ ——X=N+

X 0X X

Thus f; = (N + Z""""X)g
Consider the coefficients of (X’)° on both sides of the equation. We get

that
dan_1

ox ~ ) a0

Suppose ag # 0. There is a largest M such that X™ divides ag. Then
XM+1g5 X but then we must have X|(N + a“" =1 X), which is impossible. Thus
ap = 0. But if ag = 0, then X'|g. Since g is 1rreduc1ble anday =1, X'=g, as
desired.

agX = (N-I-

case 2. m >0

Then fi; = m(X’ + u(X))g, for some u(X) € K[X]. Considering the coef-
ficients of (X’)° we see that Xa§ = mu(X)ao. As in case one, this tells us that
either ap = 0 or X|u(X). If ap = 0, then as above g(X) = X', contradicting
the fact that ay = X™. Thus we may assume there is v(X) € K[X] such that
u(X) = Xv(X).

Looking at the coefficients of X’ N we see that:

OJan_1

N X X—
ay + Xay + X

=man_1 +mvXapn.

Since ay = X™, ajy = 0, thus

Oan_;

X@X

—man_1 = mvX™H - NX™.
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Thus X™ divides X 2%('—‘ — man_1. An easy calculation shows that
X™|ay—-1. Say any_1 = w(X)X™, where w € K[X]. Then
6aN_1 8w
=mwX™ 4 _—X™.
ax v tox
Thus 2 5% = mv— 7(1! But this is impossible since v and w are polynomials.
Thus we have a contradiction.

Corollary 5.13. Let p be the type of a generic solution to X X” = X’. Then p
has Morley rank one.

Proof.
The formula X X” = X' A X' # 0 isolates p from all other non-algebraic

types.

We next consider an example of an order two equation where the depth is
one. Let F' be a differential field and let z € F' be such that D(z) = 1. Consider
the Painlevé equation X" = 6X? + z.

Theorem 5.14 (Kolchin) If 7 is a solution to the Painlevé equation then the
transcendence degree of F(n)/F is either two or zero.

Corollary 5.15 If p is the type of a generic solution to the Painlevé equation,
then p has depth one.

Proof. If RH(p) = 2, then there is a differential prime ideal I such that I, C I
and RH(I) = 1. But if p is a generic solution for I, then u satisfies the Painlevé
equation and the transcendence degree of F/(u)/F is one.

proof of 5.14.
Suppose not. Then RD(I(n/F)) is one. Let f be the minimal polynomial
of I(n/F). f has order one. By lemma 5.11,

D(f(x)) = x4 9

/ *
6X' tox X I

But 7" = 6n% + z. Thus
0= D(f(m)
f / x
U@+ 0L+ )

Thus 2£ X' + (6X2 + ‘”)ax' + f*(X) is in I(n/F). Thus f must divide
2L X"+ (6X? +2) % + f*(X). The next lemma shows that this is impossible.

The next lemma is about polynomial rings.

Lemma 5.16. Let p(X,Y) € F[X,Y] - F. Let ¢(X,Y) = Y22 + (6X2 +
z)g}’; + p*. Then ¢ is not divisible by p.
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Proof.

Suppose p divides g. The degree (in the usual sense) of ¢ is at most the
degree of p + 1, thus ¢ = (a 4+ bX + ¢Y)p.

Let j be largest such that Y7 occurs in some term of p.

Let i be largest such that dX'Y” is a term of p. The coefficient of X!YJ+!
in ¢ is zero, while the coefficient ot X?Y7*! in (a+bX + cY)p is cd. Thus ¢ = 0.
Similarly the coefficient of X*+1Y7 in g is zero, while in (a+bX)p it is bd. Thus
b= 0. Thus for some a € F, q = ap.

Let p= z;-'___o p; X7, where p; € F[Y] and p,, # 0. For notational simplicity
welet p; =0fori<Oori>n.

Since ¢ = ap,

YZ]pJXJ -1 E dp; —L(6X7*? X)) + Z(pl —ap;)X’ =0.
This yields the system of differential equations:

dp; . dp;
6—d’72 = —pj +ap; — w— -+ DpjnY.

We solve for j =n+2,n+ 1 and n.

N

n

[

6 = 0. Thus p, = ug, for some ug € F with ug # 0.

Il

=]
al— a,
~

Pn—1

6=~ = 0. Thus p,_;1 = v, for some vy € F.

n
6‘1’;"—1," = —ug + aug. Thus p,_» = weY + to, where wg = —%(uf, — aug)
and £y € F.

We claim that for any k we can write:
Pnosk = ugY ¥ 4 Y21 4
Pr-sk—1 = ;Y2 + 5 Y21 4
Pa_sk—z = wpV ! 44, Y2 4

The above arguments show that it is true for k£ = 0. Assume it is true k.

j=n-3k-1
Using the inductive assumptions we see that
dpn_3k—
6% = (n — 3k)ur Y2+ 4 (—v} + ave + (n — 3k)rg)Y2F +

Thus pn_sk-3 = up41Y ¥ +2 4 rp Y24 4 | where

1 (n—-3k
Uk+1 = _6 <m) Uk, (1)
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and

1 (v —avg — (n—3k)ry
k1= "% ( % + 1 ‘ 2)

Similar arguments for the cases j = n — 3k — 2 and j = n — 3k — 3 yield

Pros(esr)-1 = Vet Y ¥ H g YA 4

and
Pn-3(k+1)-2 = wep Yy Y224
where:
1 w), — awg + (n — 3k — 1)vg
_ 1/t —aty + (2k + Dawi + (n — 3k — 1)s; (a)
1T T 2%k +1
1 [ ufyy —aupqr + (n— 3k — 2)up
"”““"E( 2k +3 )
and
e = 1(rhy —aregr + (2k + 2)zupqy + (n — 3k — 2)ty (6)
1T 2% +2 ‘
(1) gives a recursive definition of u;. This yields:
1\ 5 n-3i+3
Uk = (_6—) H—T Uug. (7)

i=1

We know that ug is nonzero. If n is not divisible by three, then (7) would
imply that for all k,u; # 0. Since p,_3; = 0 for k > %, we must have n = 3m
for some m. Then by equation (7) for ux = 0 if and only if £ > m + 1.

Using (7) and (5) we have

o — (A2 ’ﬁn—3i+3(u,_au)_l n—3k—2)
e 2% +3 2i o TE T2+ T

i=1

This giver a recurrence relation for the wy. Solving this we get:

-1\* , k 1 fen—3i+3 {4 n-3i+1
wk_(?) (""“"“”;(2“3‘1}1 Il ) ®

i=h+1

For 1 <1<3,pn_sm—1=p-1=0,thus uy =rm = vy = 5y = W =t =
0. Since w,, = 0, equation (8) implies that uy — aug = 0 (note that all of the
terms in the product are 1 nonzero). But then (8) implies that for all k,

wg = 0. 9)
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and (7) implies that for all &,
uf, — auy = 0. (10)

Since all of the w; = 0, (3) implies that for all k£ vy = 0 and then (2) implies
that all of the ry = 0.
Using (7) and the fact that all of the ry = 0 we can simplify (6) to

1\ E o _3i43 1/n—3k—2
_ nootto o _Ll(nzok—c),
as (6) ”'.Izll 2 6( % + 2 )"

Solving this reccurence relation for t; we get:

E+1 3 k Y
we () e (Mg 1T 225

h=0 \i=1 \ ) i=h+1 (11)
-1 n—3i+1
+ (T) t"g 2%

Since t,;, = 0, the above equation yields:

Substituting the above into (11) and simplifying we have that if 1 <k <m
then:

~1\** [ F n—3i+1) z (" n—3i+3)
o= () s (f122) § (frz2te)
6 ,];[ 21 h:zk-l-l E n—3i+1
In particular for each k such that a < k < m, there is a positive rational
number B such that (—1)*1¢; = Brzug. Thus (—1)*t; = Br(zuf + uo) [note:
this is the one point in the proof where we use the fact that D(z) = 1 (though
any positive rational would do)].
Thus

(-8, — atl) = B (z(up — auo) + uo).

But ug — aug = 0, so (—1)¥+1(¢, —at}) is a positive rational multiple of uo.
Since all of the wi = 0, (4) simplifies to:

-1 1
Sk+1 = (—6— —2—]‘:—_—*_—1) ((t;c —at) + (n — 3k — 1)sg).
So

(=) sppr = (1) (6(2_13-:1—)> (t — ati) + (= 1)* (6(%12—1))
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But for 1 < k£ < m, (—l)’“t;c — aty is a negative rational multiple of wug.
Using this and the fact that sp = 0, it is easy to show by induction that if
1 < k < m, then (—1)Fs; is a positive rational multiple of uo. In particular
sm # 0, a contradiction. This concludes the proof.

Note: The 6 in the Painlevé equation plays no role in the above proof. (ie.
it would work just as well for X" = X2 + z).
Lemma 5.16 can also be used to show that Cp(,) = Cr.

References
All of the details on forking and ranks can be found in Lascar’s book Stability
in Model Theory. Most of the material in this section is taken from [Poizat 2].
The analysis of the Painlevé equation is due to Kolchin, extending work of
Kovacic. As far as I know it is unpublished. The version I have seen is in a
letter from Kolchin to Carol Wood.

§6. Non-minimality of differential closures

In this section we will show that differential closures need not be minimal.
We will find a differential field £ with differential closure K such that there is
a differentially closed L D k with L properly contained in K. In this case L is
also a differential closure of k, so K and L are isomorphic over k. Thus we can
properly embed K into itself fixing k. This theorem was proved independently
by Kolchin, Shelah and Rosenlicht. We will follow Rosenlicht’s proof.

The first lemma gives a criteria for telling if a prime model is minimal.

Lemma 6.1. Let T be an w-stable theory. Suppose M |= T is prime over A. If
M is minimal over A, then whenever I C M is a set of indiscernibles over A, I
is finite.

proof.

Suppose M is minimal over A and I C M is an infinite set of indiscernibles
over A. Let b € I and let J = I'\ {b}. Let N | T be prime over AU J.
There is an elementary embedding of N into M fixing AU J. Thus, since M
is minimal over A, N = M and M is prime and atomic over AU J. There is
a€ A c,...,cn €J and a formula ¢(v,@, ) isolating the type of b over AU J.
Let d € J \ {c1,...,cn}. Since ¢(v,,T) isolates t(b/AU J),

M= ¢(v,3,2) v #d

and

M E ¢(b,q,c).
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Since b and d are indiscernible over AU{c1, ..., cn}, we must have M = ¢(d,,¢),
a contradiction.

The next theorem is the algebraic core of the proof. This result will also be
useful in the next section when we build many models.

Theorem 6.2 (Rosenlicht). Let k C K be differential fields such that the
Ck is algebraic over Cy. Let C denote Cy. Suppose f € C(X), ¢1,...,¢n €
C,uy,...,u,,v € C(X) and

n du

1 3% . Ov
%) = %t ox

Suppose 1,22 € K are solutions to X; = a; f(X;), where aj,a; € k. If z;
and z, are algebraically dependent over k, then each z; is algebraic over k or
ag’l)(:l!l), = alv(zg)'.

We give two partial fraction decompositions which will prove useful.

Ex 1) f(X)= 2%

=1
fx) X
3
_3xX) 0
= x tax-
Ex 2): f(X)= X3 X?.
Let u(X) X1 and v(X) = +.
Then
ou _-1
80X — X%
So
Fx__1 1
u X-1 X
and
1 1
(X) X2
1 _i_l
TX-1 X X2
du
= Ov
— 08X 4, 7
u+6X

Corollary 6.3. Let C be a field of constants and f(X) = 1+LX or f(X) =
X3 — X2, Let K be the differential closure of C and let z;,...,z, € K be
nonconstant solutions to X = a; f(X;), where a; € C\ {0}. Then z,...,z, are
algebraically independent over C.
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proof.
By 2.13 Ck is algebraic over C.
We first examine the case where f(X) = 7(% In this case v(X) = X.
If a;v'(2;) = a;v'(x;), then
X; _ T
diajm: = ajaim.

In this case z; = z;.
Suppose c is a constant solution to X’ = a; f(X). Then f(c) =0, s0 ¢ =0.
Let z1,...,z, € K be nonconstant such that =} = a; f(z;) and n is minimal
such that z;,...,z, are algebraically dependent over C.

n = 1. Then z, is algebraic over C. But then &, is constant (by 2.1), a contra-
diction.

n>1. Then z, and z,_; are algebraically dependent over C(zy,...,z,_2).
Neither z,_; nor z, is algebraic over C(z1,...,Zn_2), so by Theorem 6.2,
an¥(2n-1)' = an_1v(z,)’. But then, z,_; = z,, a contradiction.

In the second case v(z) = . Thus if a;v'(z;)a;v'(z;), z; = ;. The only
constant solutions of X’ = a; f(X) are zero and one. The remainder of the proof
is similar.

Corollary 6.4. Let C be a field of constants. Let K be the differential closure
of C. Then K is not minimal over C.

proof.

Since K is differentially closed it contains infinitely many solutions to ¥’ =
f(y), where f is one of the above functions. Let z1, 23, ... be o nonconstant so-
lutions. By 6.3 the z; are algebraically independent over C. For any z;,,...,z;,.,
since z{ = f(z;) and f(X) € C[X], C(xj,,...,z;,) = C(zj,,...,z;,). Thus
the type of z;,,...,z;  is determined by

/\(v: = f(v;) AV £ 0)Ap(vy,...,0,) #0,

for p a nonzero polynomial over C. Thus the z; are a set of indiscernibles. So,
by 6.1, K is not minimal over C.

The proof of Rosenlicht’s theorem uses the abstract theory of differential
forms.

Suppose k C K are fields. We define Qg ;. the space of differential forms
on K over k (when no ambiguity arises we will drop the subscripts).

Let Q be the K-vector space generated by the set {dz : £ € K}, where we
mod out by the relations:

d(z +y) =dz + dy,
d(zy) = zdy + ydz, and
d(a)=0for a € k.
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It is easy to see that for p(X) € k[X], d(p(z)) = 2&(z)dz.
The space of differential forms 2 satisfies a universal mapping property
given by the following lemma.

Lemma 6.5. If D : K — K is a k-derivation (ie. k¥ C Ck), then there is a
K-linear £ : Q@ — K such that D =§od.

Proof.
(iet &(dz) = D(z). This is well defined since:
£(d(z +y)) = D(z +y) = D(z) + D(y) = £(dz) + £(dy),
§(d(zy)) = D(zy) = zD(y) + yD(z) = z£(dz) + y¢(dz), and
&(da) = D(a) = 0 =£(0), for a € k.

We next show that the dimension of 2 as a K-vector space is equal to
the transcendence degree of K/k. The proof uses two facts about extensions
of derivations which we summarize in the next lemma (for proofs see Lang’s
Algebra).

Lemma 6.6. Let K be a field and let D : K — K be a derivation.

a) Let a be any element of K(X), then D extends to a derivation D* :
K(X) — K(X), with D*(X) = a.

b) If L/K is separable algebraic, then D extends to a derivation on L.

Lemma 6.7. dimgQ = td(K/k).

Proof.
Suppose t1,...,t, € K and p(X1,...,X,) € k[X] is of minimal degree such
that p(f) = 0. Then

n
dp(t) = %@dh =0.
i=1 :

Since the degree of p is minimal, for some 3, 8—‘3%(?) # 0. Thus dty,...,dt,, are
linearly dependent over K. Thus dimg () < td(K/k).

Suppose t,, .. .,t, are algebraically independent over k. By 6.6, we can find
derivations D; : K — K such that

D(t,') — { 1, ifi:j;

0, otherwise.

Let & : Q2 — K such that D; =¢;04d.
Suppose ay,...,a, € K and

2": ajdt; = 0.
j=1
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Then "
0=&()_ajdt;)
j=1

n

=Y a;Di(t;)
j=1

= a;.

Thus dty,...,dt, are linearly independent, so dimgQ > td(K/k).
Corollary 6.8. If t € K, then ¢ is algebraic over k if and only if dt = 0.

Suppose D : K — K is a derivation. Let D' : Q — Q, be defined by
D' (Z :c,-dy,-) = Z (D(z;)dyi + :c,'d(D(y,-)) .

The following properties are easy to verify for z € K, w,n € Q:
D'(w+n)=D'(w)+D'(n)
D'(zw) = D(z)w + zD'(w)
D'(dz) = d(D(z)).

Lemma 6.9. Let D : K — K, be a derivation such that D|k is a derivation on
k. If z,y in K are algebraically dependent over Cy, then D(y)dz = D(z)dy and
D'(zdy) = d(zDy).
Proof. Let p(X,Y) € Ci[X,Y], be such that p(z,y) = 0.

Since p(z,y) =0, d(p(z,y)) = 0. But

0 0
d(p(=,)) = 5@, 1)dz + 22(2,y)dy.

So 5
L )
- = — %, (%, Y).
dz =

Also, since the coefficients of p are constant, D(p(z,y)) = %D(z)-}-%}D(y)
(see lemma 5.11). Thus

Dy) _ 7%
D(l‘) - -g(ziy)'

So D(z)dy = D(y)dz.

Finally
D'(zdy) = D(z)dy + zd(D(y))

= D(y)dz + 2d(D(y))
= d(zD(y)).
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Lemma 6.10. Suppose uy,...,u,,v € K and all the u; are nonzero. Suppose
€1,...,Cn € k are linearly independent over Q. Let

" duy;
w:dv+Zc,~ .’.

u

i=1
Then w = 0 if and only du; = ... = du, = dv = 0 (ie. all of the u; and v are
algebraic over k).

Proof.
case 1. uy,...,u, are algebraic over k.

Then all of the du; = 0. Thus w = 0 if and only if dv = 0 if and only if v is
algebraic over k.

Thus we may assume that some u; is transcendental over k. Without loss
of generality assume u, is transcendental over k. We will show this leads to a
contradiction.

case 2. u is transcendental over k and ug, ..., un, v € k(u1).
We can give formal Laurent series expansions for u; and v in terms of u,.
Say

oo
p— ()
u; = E aj;uy, and

1=m,

(o)
v= Zﬂ;u’i.
i=l
Then -
duj = [ Z (i+1)aj,,-+1u'i]du1, and

i=m,; -1

dv = [i i+ 1)ﬂi+1u§]dul-

i=l-1

In particular in this expansion dv = f(u;)du;, where f(u;) is a Laurent
series where the coefficient of uy! is zero.

Thus d
% = du; (mjuy ' + higher degree terms)
g

If w = 0, then comparing the u7! coefficients we see that

n
¢+ ijc]' =0.
Jj=2

This is a contradiction, since ¢y, ..., c, are linearly independent over Q.
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Finally we show that we can reduce to case 2. Suppose u; is transcendental
over k. Let uy,t; ...t,, be a transcendence base for uy, ..., u,, v over k. Consider
the natural homomorphism ¢ : Qg/x — Qk/i(t,...1,)- If w = 0, then ¢(w) = 0.
We replace k by k(t;...t;). Thus we assume that u; is transcendental over k
and uz ... un,v are algebraic over k(u1).

We also replace K by a finite algebraic extension of k(uy,...,un,v) so that
K /k(u,) is Galois.

Let G = Gal(K/k(u1)). For o € G, let

dou;
w’ = Z c; cru: + dov

Each w? =0. Let =}, o w°.
For j=2,...,n,let
uf: Hau,-.
c€EG

Then uf € k(up) and

duf = Z(H Tuj)dou;.

0€G T#0
Let
o# = Z ov
o€EG
dv# = Z dov.
oEG
Thus n .
du du?
n=I[K: Ic(ul)]cl—1 +)) ¢ ; + do¥#.
g B

Replacing u; by uf for j > 2, v by v#, and ¢; by [K : k(u1)]e1, we have
reduced to case 2.

Remark. The fact that the constants cy,...,c, are linearly independent over
Q is a red-herring. Note that:

;) d=y) _ de 4 dy
l) Ty _:c+y
ii) 44° = nde for n € N.

Using these two facts it is easy to see that for any 5 c;{—:‘f can be rewritten
as 3, b,-dT""l where the b; are linearly independent over Q.

We are now ready to prove theorem 6.2 which we repeat for convenience.
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Theorem 6.2 (Rosenlicht). Let k C K be differential fields such that the
Ck is algebraic over Ci. Let C denote Cy. Suppose f € C(X), ¢1,...,¢n €
C,uy,...,upn,v € C(X) and

I o > S
FX) T2y T ax

Suppose z1,z2 € K are solutions to X! = a,f(X;), where a1,a2 € k. If 2,

and z, are algebraically dependent over k, then each z; is algebraic over k or
azv(Xl)' = Cll'l)(Xz)l.

proof of 6.2.

We may assume that K = k(z1,z2). Suppose z; and z3 are algebraically
dependent over k, but neither is algebraic over k. Thus td(K/k) = 1. By lemma
6.7, dimgQ = 1. In particular, —‘(‘%*J generates 2 as a K-vector space. Thus

there is a nonzero ¢ € K such that

d:Cg dl‘l

&)~ T )

We claim that c is a constant.
By lemma 6.9 (with 2 = 705,y = z:).

/

() =o(5y) =

since a; € k.
Thus d

_ pry 4%2

0=0 (f(fz))
Y] d(ltl
=5,y

d:cl dl’l

= P03y P ey
= D7

But then D(c) = 0 so ¢ is constant and hence algebraic over k.
We now use our expression for f and the fact that d(w(z)) = $%dz for
w(X) € Cp(X).

dz; - %(’- Ov
= i~ (zi)dz; + 5 (z:)dz;
() j;c] 4 (zi)dz +3X(x) z

=) o A2 doa),

uj(zi)
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So by-(1)

> o X4 | g p)) = c<2 o ) d(v(xl))). @

uj(z2)

Since ¢ € Ck, c is algebraic over Cy. Thus by corollary 6.8 dc = 0. Thus
we can rewrite (2) as

> (d(uj(wzn _ d(cuj(xl))) + d(o(za) - w(m)) 0. @

= 7 Uj(.‘l)g) uj(z'l)

We now apply lemma 6.10 (and the remark following it) to (3). Thus
d(v(z2) — cv(z1)) =0 (4).
Finally,
arv(z2) = al-g—;((xz)x’z
= alaz—(xz)f(w)
d(v(xz))
i)
d(v(z1))
T
FEN)

= aaz

Similarly

azv(z1) = ajay

By (1) and (4
PO e oty

_3_ c_ﬁg_
f(z2) f(z1)
Thus
a1v(z2) = agv(z1),
as desired.

We conclude this section with a proof that in Rosenlicht’s extensions we do
not add new constants. This will be useful in the next section.

Definition. We say that E/F is a function field if there is t € E transcendental
over F' and E is a finite algebraic extension of F'(t).

If F is algebraically closed, then function fields correspond to isomorphism
classes of smooth projective curves over F'. If E/F is a function field, then the
genus of E is the genus of the corresponding curve.

Lemma 6.11. Let K/k be differential fields such that K/k is a function field
and C} is algebraically closed. If Ckx # Ck, then Ck/Ck is a function field and
the genus of Ck /Cy is at most the genus of K/k.
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Proof.
Suppose Cx # Cy and t € Cx — Cy. Then t is transcendental over Ci. The
arguments from the proof of 2.13 show ¢ is transcendental over k.

claim. Ck(t) = Ck(t). .
Suppose D(p(t)) = 0, where p(X) = a; X* € k[X]. Then

D(p(t)) = D(t) Y iat' "+ D(a:)t' =) D(a)t".

Since t is transcendental over k, we must have all D(a;) = 0, so a; € Cy. Thus
p(t) € Ci(2).
Suppose p(X) and ¢(X) arein k[X] and D(%%) = 0. We may assume that ¢

is monic and that for any go of lower degree there is no pg such that ;L(% = %((t—%

Since D(%J) = 0, q(t)D(p(t)) p(t)D(q(t)) = 0. But then ZECN = 201 But
if ¢(X) = X" + .07 b: X", then D(q(t)) = Yi=y D(bi)t', contradicting the
minimality of g.
claim. Ck /C} is a function field.

We know that ¢ is a transcendence base for K over k. Assume that K/k(t)
is an algebraic extension of degree N. Let £ € Cx — Cy(). Let f(X) € k(t)[X],
be the minimal polynomial of z over K. The degree of f is at most N. Let
fX) =X+ bX\ 0= D(f(z)) = iy ! D(b;)z¢. Since this polynomial
has lower degree, we must have all of the D(b ) =0. So f(X) € Cry[X]. Thus
[Ck : Ci1)] £ N. So Ck /C} is a function field.

Let a be a generator for Cx/Ci(r). Let f(X,Y) € Ci[X,Y] such that
f(t,Y) is the minimal polynomial of a over Ci;). By the above arguments
f(t,Y) is also the minimal polynomial of a over k(t). Thus k(¢,«) is a function
field of the same genus as Ck/Ck. Since k(t,a) C K, the genus of K/k is at
least the genus of k(t,a)/k (there can be no maps from a curve of genus g to a
curve of genus g; > g [by Hurwitz formula)).

Theorem 6.12. Let k£ be a differential field such that C = Cy is algebraically
closed. Let f(X) € Cx(X) and let = be a solution of the differential equation
D(X) = f(X), where z is transcendental over k. Suppose that f(l—x) is not of

the form cg—)'}/u or cg—;’( for any u or v € C(X),c € C. Then Cy;) =C.
Proof.

Suppose Cy(z) # C. By 6.11, Cy(,) is a genus 0 function field over C. Thus
there is ¢ € Cy(;) such that Cy,) = C(t).

Consider the non-zero differentials dt and i in Qi(zy/x- By 6.7 there is
g € k(z) such that (x) = gdt.

D’(gdt) D(g)dt + gD'(dt) = D(g)dt + gd(D(t)) = D(g)dt. While by 6.9

D'(f%) = d(3H) = d(1) = 0.

Thus D(g) =0, s0 g € C(2).
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Using the partial fraction decomposition of ﬁﬁ € C(z), we can write

dz i du,-
f_(:c—) = ;c,‘u—i +dv

where ¢; € C, u;,v € C(z). Using the remarks after the proof of 6.10 we can
choose this decomposition so that ¢,...,c, are linearly independent over Q.
Since g € C(t), we can use the partial fraction decomposition of g to write

. dw;
. wsg
i=1
where b; € C and w;,y € C(t).
Let ¢1,...,¢n,Cn41,-.-,¢cn be a basis for the span of ¢1,...,¢n,b1,...,bm
over Q. Using the remarks after 6.10, letting u; = 1for j =n+1,...,N and
suitably defining the w;, we can may assume:

N
dz du;
)~ &

)

gdt = Zb —+d

where b; = 5 for some M € Z.
Note that p p oy )
U; Wy . u;” fw;
Me; u; G w; _c,( uM Jw, )

Thus we may use the fact that gdt = fd(”) to conclude that

N
S e 28 4 -y =0
i=1 M fwi

By 6.10, d(uM /w;) = 0 for each i and d(Mv—y) = 0. Since k(z) is a purely

transcendental extension of k, by 6.8 each uM /w; € k and Mv —y € k.
M

For each ¢, D(%T) = %u,M'lD(u;), since w; € C(t) = Cy(s). Thus 2,(%2 €
k. We also have D(v) € k. But uy,...,u,,v € C(z). Thus ﬂu%l and D(v) €
kNnC(z)=C.

For any h € C(z), D(h) = aXD( z) = 2% f(z). At least one of uy, ..., un,v

Su

is not in k, for otherwise dz = 0. Thus at least one of ;—_i' for g—z f is a nonzero
element of C. Thus Rlz_) is of one of the forms stated in the theorem.
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References

The nonminimality of differential closures was proved in [Kolchin 3], [Rosen-
licht 1] and [Shelah]. Shelah’s and Rosenlicht’s arguments are discussed in [Gra-
main 1] and [Gramain 2].

[Rosenlicht 2] contains some of the theory of differential forms that we use.
This work is an extension of earlier work of Ax.

[Brestovski] contains several extensions of Rosenlicht’s ideas.

§7. The number of non-isomorphic models

In this section we will prove that if x is uncountable, then there are 2¢
non-isomorphic differentially closed fields of cardinality «, while also analyzing
orthogonality and strongly regular types. The number of countable models was
only recently shown to be 2% by Hrushovski and Sokolovié. Pillay’s paper in this
volume contains a proof of this result. [Through out this section we assume a
reasonable knowledge of stability theory. References [L] are to Lascar’s Stability
in Model Theory, while [B] is Baldwin’s Fundamentals of Stability Theory.]

We say that @ and b are independent over k if the ¢(a/k (b)) does not fork over
k. We writea |, b. Recall that the aJ,kb if and only if RD(a/k) = RD(a/k(E))
We say that a type is stationary if over any extension of the domain there is
there is a unique non-forking extension. For p € Si(k), p is stationary if and
only if the minimal polynomial of p is absolutely irreducible.

Lemma 7.1. Suppose K |= DCF and F is the differential closure of K (b). If
a € F— K thena} b

Proof.
Let (v, b) isolate t(a/K (b)). For all m € K, ¢(v,b) — v # m.
Suppose aJ_,Kb By symmetry b\LKa ( see [L] 3.5). Thus t(b/K (a)) is the
heir of t(b/K). Since t(b/K (a)) represents (v, W), there is ap € K such that
¥(ag, b). But then t(ag,b) — ap # ao, a contradiction.

Note that the above argument works for any stable theory with prime mod-
els.

Definition. Let K | DCF and p,q € Si1(K). We say that p and ¢ are
orthogonal if and only if for any a realizing p and b realizing ¢, a | Kb. We write

plg.

The above notion is usually called almost orthogonality. For types over
models of an w-stable theory these notions are equivalent (see [L] 8.23).
p € S(k) and ¢ € S(I), we say that p L ¢ if and only if for any differentially
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closed K D kUI, if p’ and ¢’ are non-forking extensions of p and ¢q to K, then
p' L ¢’. In general if p L q and p’ and ¢’ are nonforking extensions of p and ¢
respectively, then p’ L ¢'.

Lemma 7.2. If K = DCF, p,q € Si(K), p L g, a realizes p and F is the
differential closure of K (a), then g is not realized in F.

Proof. Clear from 7.1.

Lemma 7.3. Suppose F' D K are differentially closed, ¢(v) is a formula with
parameters from K and every element of F' that satisfies ¢(z) is already in K.
Let a € F — K, let p = t(a/K) and let ¢ € S1(K) be a type containing ¢(v).
Then p L q.

Proof. Let b realize ¢q. Let r(X) € K{X} be the minimal polynomial of ¢. If
b ) a, there are 9(X),h(X) € K(a){X}, such that g(b) = 0, the order of g is
less than the order of r, the order of h(X) is less than the order of g(X) and

o(z) = 0 A h(2) # 0 — $(a).
Since ¢(v) has no new solutions in F,
{zeF:FlEg(x)=0Ah(z)£#0} ={z € K : F | g(z) = 0A h(z) # 0}.

By definability of types and model completeness, there is a formula 1(v) with
parameters from K such that { € K : F E g(z) = 0A h(z) #0} = {z € K :
K E ¢(z)}={z € F : F |= 9(z)}. Note that 1(b) holds. But F' |= “there are
polynomials g and h such that g has order less than r and h has order less than g
such that (g(z) = 0Ah(z) # 0) if and only if 1(z). Thus by model completeness
there are go, ho € K{X} such that go(z) = 0 A ho(z) # 0 is equivalent to ¥(z).
In particular go(b) = 0 contradicting the fact that r is the minimal polynomial
of t(b/K).

As an application of 7.3 suppose p € S;(K) is the type of a differential
transcendental. Let K, be the prime model over a realization of p. We first note
that every element of K, \ K is differentially transcendental over K. Suppose
not. Let b € K, \ K, and suppose f(b) = 0 for some f(X) € K{X}. Then
RD(b/K) < ord(f) but by 7.1 a . b. Thus RD(a/K(b)) < w. But RD is
transcendence degree. Thus if td(K(a b)/K (b)) < w and td(K(b)/K) < w, then
td(K(a)/K) < w contradicting the fact that a is a differential transcendental.

In particular if f € K{X}, f(X) = 0 has no solutions in K, — K. Thus by
73if g€ Si(K)and ¢g#p,qLp.

Definition. Let K, F = DCF. Let p € S(F). We say p L K if and only if for
all ¢ € S(K), if ¢ is a non-forking extension of ¢ to F then p L ¢'.

We use the following fact (see [B] VI 2.23).
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Lemma 7.4. If M C N T and f is an elementary map with domain N such
that N\LMf(N), then p L M if and only if p L f(p).

Definition. T has the dimension order property (DOP) if and only if there are
My, My, My, M3 models of T such that:

1) My C My N M,

2) MlJ/MoMZ

3) M3 is prime over M; U M.

4) There is p such that p L M;, p L My, and p £ Ms.

The interest of the dimension order property is the following theorem of
Shelah (see [B] XVI).

Theorem 7.5 If T' is w-stable with DOP, then for any uncountable k there are
2% non-isomorphic models of T' of power k.

Theorem 7.6 Differentially closed fields have DOP.

Proof.

Let K | DCF. Let b,by be independent differential transcendental over
K. Let K;, i = 1,2 be the differential closure of K (b;). Let K3 be the differential
closure of K (by,b2).

Let p € S1(K3) be the type of a generic solution of X’ = b1byf(X), where
F(X)=X3= X2 (or f(X)= 7). Clearly p L K3.

We claim that p L K;. By 7.4 it suffices to show that if b3 is differentially
transcendental over K, b3\LK1b2, and ¢ is the type of a generic solution of
X' = bib3f(X), then p L q.

Let F' be the differential closure of K(b;,bs,bs) and identify p and ¢ with
their non-forking extensions to F'. Let z; and 2 be realizations of p and ¢ over
F. We claim that :clj/Fzz. Let L = F(zy1, ). Since z; € F(x;), it is easy to
see that F'(z;) = F(z;) and L = F(z;, z,). Since RD(p) = RD(q) = 1, these are
types of U-rank. If ¢(z5/F(z,)) forks over F, then z, is algebraic over F(z;).

We will apply Rosenlicht’s theorem with ¥ = F and K = L. We need
to show that Cf is algebraic over Cr. By theorem 6.12, Cr = CF(q,). In
general if K/k is algebraic then Ck /Cy is algebraic. [Let ¢ € Ck, let  a;X*
be the minimal polynomial of ¢ over k, where the leading a; = 1. Then 0 =
D(Ya;c') =3 D(a;)c* + D(c) Y da;ci=1. So 3" D(a;) X" vanishes at ¢ but this
has lower degree unless all of the a; are constants.] Thus Cy, is algebraic over
Cr.

By Rosenlicht’s theorem, bi1byv(z2)’ = bibzv(z1)’. As we saw in 6.3, this
implies z; = 3, but this is impossible since b1by # by bs.

Similarly p L K5, so p witnesses DOP.

Corollary 7.7 For k > R;, there are 2* non-isomorphic differentially closed
field of power «.
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The idea of the proof is the following. Fix M a differentially closed field of
power k containing (@, b, : @ < k) independent differential transcendentals.

Let R be a binary relation on k. We can find Mg differentially closed of
power k. Such that R(«,B) if and only if X' = anbgf(X) has ®; solutions and
—R(a, B) if and only if X’ = aqabg f(X) has Rq solutions. This idea can be used
to build 2* non-isomorphic models. (For example this shows that if @ is the
quantifier “there exists uncountably many” DCF is unstable in L(Q).)

We conclude this section with some remarks on strongly regular types and
orthogonality.

Notation: If K |= DCF and p € S1(K) we let K, denote the prime model over
a realization of p and we let f, denote the minimal polynomial of p.

Definition. Let K | DCF. A nonalgebraic type p € S1(K) is strongly regular
if and only if for any ¢ € K, \ K, if fy(a) = 0, then p = t(a/K).

If p € Sy(k) is stationary, p is strongly regular if and only if for any differ-
entially closed K D k, the non-forking extension of p to K is strongly regular.

I K,FE DCF,K CF,pé€ Si(K), g € S1(F), qis anon-forking extension
of p and p is strongly regular, then g is strongly regular. (See [L] 8.9).

Two important types are easily seen to be strongly regular. Let t. € S;(K)
be the type of a new constant and let ¢, € S1(K) be the type of a differential
transcendental. Clearly every constant in K; — K realizes t. and every new
element of K;, — K realizes t; (see the argument following 7.3). Note that in
the case of t; the minimal polynomial is 0.

The next lemma shows that strongly regular types are abundant.

Lemma 7.8. If F,K = DCF and K C F then there is a € F — K such that
t(a/K) is strongly regular.

Proof. Choose a € F — K such that RD(a/K) is minimal. If RD(a/K) = w,
then a is differentially transcendental over K, and t(a/K) is strongly regular.
Otherwise, let f be the minimal polynomial of t(a/K). If b € F—K and f(b) = 0,
then RD(b/K) is at most the order of f. By the minimality of RD(a/K),
RD(b/K) is equal to the order of f. Thus f is the minimal polynomial of
t(b/K), and t(b/K) = t(a/K). Hence t(a/K) is strongly regular.

Lemma 7.9. If K | DCF and p € S1(K) has RU(p) = 1, then p is strongly
regular.

Proof.

Let a realize p and let K, be prime over K(a). Suppose b € K, \ K and
fp(b) =0. By 7.1 a f  b. Thus RU(a/K (b)) = 0 and a is algebraic over K(b).
Let g(X) be the minimal polynomial of ¢(b/K). Since f(b) = 0, the order of g
is at most the order of f. The order of f is equal to the transcendence degree
of K(a)/K ,while the order of g is equal to the transcendence degree of K(b)/K.
Since a is algebraic over K(b), f and g must have the same order. But then
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since f € I(g), f and g are multiples of each other by an element of K. So
t(b/K) =p.

Lemma 7.10. Suppose p € S1(K) is strongly regular and f(X) is the minimal
polynomial of p. Let ¢ € S;(K) be such that “f(v) = 0” € ¢ and RD(q) <
RD(p). Then ¢ L p.

Proof.
Let g be the minimal polynomial of g. Then K, \ K contains no elements
satisfying f(z) = g(z) = 0. Thus, by lemma 7.3, p L q.

Lemma 7.11. Suppose p € S;(K) is strongly regular, and K C K’ C K,, and
K # K', then K, = K'.
Proof.

Let a realize p and let K, be prime over K(a). Suppose b € K’ \ K. First,
suppose K’ \ K contains no solutions to f,(X) = 0, then #(b/K) L p. But since
b€ Kp, a ), b, a contradiction. Thus K'— K contains a solution d to f»(X) = 0.
Since p is strongly regular ¢(d/K) = p. Thus K’ contains a realization of p, and
hence is prime over a realization of p. By uniqueness of prime models K’ = K.

Definition. We define the Rudin-Keisler order on S1(K) as follows. Let p,q €
S1(K). We say p >rk ¢ if and only if ¢ is realized in K,. We say p ~rx ¢ if
P >rk ¢ and ¢ gk p.

Corollary 7.12. If p € S;(K) be strongly regular, ¢ € S1(K) is non-algebraic
and p >Rk ¢, then p ~gk ¢

Proof.
We can embed K, C K, such that K, # K. By 7.10, K, contains a
realization of p.

Lemma 7.13. Let p,q,7 € S1(K). Suppose r >grkx p and r L ¢, then p L q.

Proof. Let a,b realize p,q. Since r >gg p, we can find d realizing r such that
a is in the differential closure of K(d). Since ¢ L r, b| . d. In particular we can
find a differentially closed field F O K(d) such that t(g{/ F) is the heir of the gq.
Since K{a) C F,b] a. Thusp L q.

Corollary 7.14. Let p,¢ € Si(K) be strongly regular. The following are
equivalent:

i) K, 2 K,

i) p>ri ¢

iii) p ~rK ¢

iv)p La.
Proof.

i) = ii) = iil) = 1) is clear from 7.11,7.12.
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ii) = iv). Is clear from 7.2.

iv) = ii). Suppose p 2rk ¢. If K, \ K contains no elements satisfying
fqo(x) = 0, then by 7.3 p L ¢q. Suppose a € K, \ K and f,(a) = 0. By 7.10
g Lt(a/K). By 712 t(a/K) >rKk p, thus by 7.13 p L ¢, as desired.

Strongly regular types are important because they can be assigned dimen-
sions. (The reader is referred to [B] chapter XII for details.)

Let £k C K. We say that A C K is k-free if and only if for all ¢ € A
al ,A—{a}.

If p € Si(k), we say that B C K is a p-base for K if it is a maximal k-free
set of realizations of p. If p is strongly regular, then } is transitive on the
realizations of p. Thus any two p-bases have the same cardinality. We call this
cardinality the p-dimension of K/k. We denote this as dim(p; K). If ko, k1
are finitely generated, p; € Si(k;) is strongly regular, and K O ko U ky, then
dim(po; K) differs from dim(p;; K) by at most a finite amount.

Two dimensions are clearly important invariants of a differentially closed
field. Let t. € S1(Q) be the type of a new constant and let ¢, € S;(Q) be the
type of a new transcendental. For any differentially closed field K, let I.(K) =
dim(t.; K) and I,(K) = dim(ty; K). It is easy to see that for pair of cardinals
Kk, A, there is a differentially closed field K with I.(K) = & and I,(K) = A.
Until the work of Hrushovski and Sokolovié the only types known that were
nonorthogonal to t. and t; were trivial types like those arising from Rosenlicht’s
examples. This lead Lascar to conjecture that perhaps any strongly regular type
which is orthogonal to ¢. and ¢, is Ro-categorical. Lascar’s conjecture would have
implied that the number of countable models is ®y. Indeed a countable model
would be determined up to isomorphism by I;(K) and I.(K). The work of
Hrushovski and Sokolovié shows that this is far from true. There are many locally
modular strongly regular types which are not Rg-categorical. These matters are
discussed extensively in Pillay’s article in this volume.

References

Shelah ([Shelah 1]) proved that in uncountable cardinals DCF has the max-
imal possible number of models.
The analysis of orthogonality and strongly regular types is from [Lascar 1].
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§8. Differential Galois Theory

Let K/k be differential fields. We define G(K/k) the Differential Galois
Group of K over k, to be the group of differential automorphisms of K which
fix k pointwise.

We begin by looking at some important examples.

Examples:

1) Adjoining an integral:

Let a € k. Consider the equation X’ = a. Let u be a generic solution of
X' = a over k and let K = k(u). Since v’ = a € k, K = k(u). If 0 € G(K/k),
then o(u)’ = a, thus for some ¢ € Ck, o(u) =u+c. ff c€ Ci, then u— u+c¢
determined a differential automorphsim of K fixing k.

We will assume that C} is algebraically closed. Then by theorem 4.5 K/k
is Picard-Vessiot (the equation X" — %/X " = 0 has linear independent solutions
1 and u). Indeed if X’ = a has no solution in k, then K/k is Picard-Vessiot
(see [Kaplansky]). Since Cx = C}, the above argument shows that G(K/k) is
isomorphic to the additive group of Ck.

2) Exponentials

Let a € k. Let u be a generic solution of X’ = aX over k. Let K = k(u) =
k(u). Suppose Ck = Cj (for example, suppose Cy is algebraically closed), then
K/k is Picard-Vessiot. If 0 € G(K/k), then o(u) = cu, for some ¢ € Ck.
Moreover if ¢ € Cj, then u — cu determines an automorphism of K. Thus
G(K/k) is isomorphic to the multiplicative group of Ck.

3) We next exhibit a Picard-Vessiot extension where the differential Galois group
is GL,(C).

Let ko be any differential field and let K = ko(X1,...,X,). Let C =
Ck, = Ck. Suppose A = (a; ;) is a non-singular n X n matrix over C. Then A
determines an automorphism of K by 4(X{™) = Za,-,jX}m). Thus GL,(C)
is a subgroup of G(K/ko). Let k be the fixed field of GL,(C). One sees that
G(K/k) = GL,(C).

Let
W(Y,X1,...,Xn)

W(X1,...,Xn)

We claim that L(Y') is a linear differential equation over k. To see this note that
if A € GL,(C) and X is the matrix such that W(X3,...,X,) = |X|, then

W(oa(X1),...,04(Xn)) = |XAT| = W(Xy,..., Xn)|AT|,

L(Y) =
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while

1 0

0 AT
=W(Y,Xy,..., Xn)|AT|.

Thus L(Y) is invariant under o4, so L(Y) € k{Y}. The elements

Xi,...,Xn are linearly independent solutions to L(Y) = 0, thus K/k is Picard-
Vessiot.

W(Y,04(X1),...,04(Xp)) = W, X1,..., Xn) -

In all of these examples the differential Galois group of the Picard-Vessiot
extension is a linear algebraic group over the constant field. We next show that
this is always the case.

For the following arguments we fix K a very saturated differentially closed
field. K will serve as a universal domain (ie. monster model) for all of our work.

Let k be a differential field and let K/k be a Picard-Vessiot extension. Say
K = k(uy,...,u,) and L(Y) = 0is the homogeneous linear equation determining
the extension. Recall that since K/k is Picard-Vessiot, Cx = Ci. We denote
the common constant field C.

Suppose k C F and o : K — F is an embedding fixing k. Then o(u;) is a
solution of L(Y) = 0 for each i. Thus there are constants c; ; € Cr such that
o(ui) = ciju;. We call (¢; ;) the matrix associated with o.

Theorem 8.1. There is ¥ a system of equations in C[X; ;.1 < i,j < n] such
that:

i) If ¢ : K — F is an embedding fixing k, then the coefficients of the matrix
associated with o satisfy X.

ii) If F D K and ¢ € Cr satisfies I, then u; — ) c¢;;ju, determines an
embedding of K into F fixing k.

This immediately yields:

Corollary 8.2. If K/k is a Picard-Vessiot extension of order n, then G(K/k) is
isomorphic to an algebraic subgroup of GL,,(C) (ie. G(K/k) is a linear algebraic
group over the constant field).

proof of 8.1.
Let p be the type of @ over k. Consider the map

¢:k{Y1)-"vYn}—'K[Zi,j ISI,]STL]

determined by Y; — Y7, Z; ju; and let A be the image of I, under ¢.

In other words, A is the ideal of polynomials in K[Z] such that if d is in
the variety given by A and o is the map u; — ) d; ju;. Then o(uy),...,0(un)
is in the variety given by Ij,.
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Let W be a vector space basis for K over C. For each f € A, write

f= Z fw(7)w

weW

where f,, € C[Z).

Let ¥ be the ideal generated by the {f, : f € A,w € W}.

Let L be the differential closure of K. Then Cf, is the algebraic closure of
C. Since the elements of W are independent over C, and K and C, are linearly
disjoint over C (as C is algebraically closed in K), L |= “ for all constants ¢, if
p(c) = 0, then for all w € W, py(¢) = 0”. By model completeness this is also
true in K.

Suppose o : K — K is an embedding fixing k¥ and determined by u; —
Y cijuj, for some constants ¢ € K. Then for every polynomial »(Z) € A,
p(c) = 0. By the above remarks, for all w € W, py(¢) = 0. Thus all of the
polynomials in ¥ vanish at €.

Let F D K and let A = (¢;;) be a nonsingular matrix in Cr such that ¢
satisfies £. Let o : K — F fix k and send u; — ) c¢;ju;j. We claim that o is
an embedding. We chose ¥ to insure that ¢ is a homomorphism. It suffices to
show that o is one to one.

Suppose not. Then td(K/k) > td(k(o(@))/k) (if o has a nontrivial kernel,
then the Krull dimension of k(%) is greater than the Krull dimension of k(o ())).
Thus td(k(T, o(2))/k(@) < td((T, o(2))/k{o().

Also td(k(w, o()))/k(T) = td(k(T,c)/k(T)).

But if constants € are algebraically dependent over a differential field L they
are dependent over the constants of L. Thus td(k(4,¢)/k(z)) = td(C(c)/C).

But C is also the field of constants of k(o(%)). Thus

td(k(o(a),)/k(o(w))) = td(C(2)/C),

a contradiction.

There is a beautiful Galois theory for Picard-Vessiot extensions. We state
the main theorem here and refer the reader to the books by Kaplansky and
Magid.

Definition. Let K/k be differential fields and let G(K/k) be the differential
Galois group. If H C G(K/k), let Fiz(H) = {z € K :Vo € H o(z) = z}.

We say that K/k is normal if for any z € K \ k there is ¢ € G(K/k) such
that o(z) # «.

Theorem 8.3. Let k be a differential field with C} algebraically closed. If K/k
is Picard-Vessiot, then K /k is normal, G(K/k) is a linear algebraic group over
Cr and L — G(K/L) gives a one to one correspondence between the interme-
diate differential subfields of K/k and the algebraic subgroups of G(K/k). An
algebraic subgroup H is normal if and only if Fiz(H)/k is a normal. In this case
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G(Fix(H)/k) is G(K/k)/H. Moreover if k is algebraically closed, then G(K/k)
is connected

Much as ordinary Galois theory can be used to prove that the general quintic
can not be solved by adjunction radicals, differential Galois theory can be used
to prove the unsolvability of differential equations by simple means.

Let f(X) € k{X}. We say that K is a Liouville extension of k if there are
extensions k = Ko C K1 C --- C K, = K, where each K;,; is obtained from
K; by adjoining an integral, adjoining the exponential of an integral or making
an algebraic extension. We say that f(X) = 0is solvable by quadratures if it is
solvable in a Liouvile extension.

Theorem 8.4. Let k be a differential field of characteristic zero with Cj, alge-
braically closed. Suppose that K/k is Liouville. If K D L D k is Liouville, then
the connected component of G(L/k) is solvable.

For example this method can be used to show that 3’ = y?—z is not solvable
by quadratures over C(x)

References

The algebraic Galois theory of Picard-Vessiot extensions is due to Kolchin
([Kolchin 4]). Kaplansky’s Differential Algebra and Magid’s Lectures on Differ-
ential Galois Theory provide extensive treatments of this subject. We refer the
reader to these books for the proofs of theorems 8.3 and 8.4.

§9. Strongly Normal Extensions.

In this section we will examine Kolchin’s strongly normal extensions. This
class of extensions contains the Picard-Vessiot extensions and also has an inter-
esting Galois theory. Again we work inside a very saturated universal domain

K.

Definition. L/K is strongly normal if and only if
i) Cr = Ck is algebraically closed
ii) L/K is finitely generated
iii) if ¢ : K — K is an automorphism fixing K, then (L, Cx) = (¢(L), Ck)-

For example, if Ck is algebraically closed and L/K is Picard-Vessiot, we
show that L/K is strongly normal. Suppose L = K (a), where @ is a fundamental
system of solutions to a linear equation over K. For any K-automorphism
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o, o(a) € (L,Ck), thus (L,Ck) 2 (o(L),Cx). Similarly, L is contained in
(6(L),Cxk). So equality holds.

We will show that for strongly normal extensions G(L/K) is an algebraic
group over Ck.

Lemma 9.1. Suppose L/K is strongly normal and L = K(@). Then L is
contained in the differential closure of K.

Proof. Suppose not. Let F' be the differential closure of L. Note that Cr =
Cr = Ck. Let p be the type of @ over the differential closure of K and let ¢
be a non-forking extension of p to F'. Since F' contains no new constants, p is
orthogonal to the the type of a new constant. Thus ¢ is orthogonal to the type
of a new constant. Let b realize ¢ and let F} be the differential closure of F(b).
Since ¢ is orthogonal to the constants, Cr, = Ck.

Since @ and b realize the same type over K, there is an automorphism of K
fixing K and sending @ to b. Thus since L is strongly normal, b € (L,Ck). In
particular, there is a K-definable function f such that

K3 (/\c=0Af(@zc) =b).
By model completeness
P ETF (N =0Af(@7) =}).
Thus b € (L,Cr,) = L. Thus @ must be in the differential closure of K.

Suppose L = K(a) and L/K is strongly normal. Since @ is in the differential
closure of K, there is a formula (%) over K, which isolates the tp(a/K).

Lemma 9.2. () isolates tp(a@/(K,Ck)).
Suppose b € K, € Ck and ¢(3,b,€) and ~¢(7, b, ) split ¥(7). Then
K | 3¢ (/\ ¢ = 0A 303w (4(3) A (@) A 6(3,5,2) A ~6(,5,7))).

By model completeness this is also true in the differential closure of K. But
the differential closure of K has the same constants as K. Thus 9 is not an
atom over K, a contradiction.

Before proving the general result we examine an important special case.

Example. Weierstrass Equations:

Fix gs,93 € Ck with 27g% — g3 # 0. For a € K let G,(Y) be the differential
polynomial (Y’)? — a2(4Y3 — g,Y — g3).

We say that o € K is Weierstrassian over K if it is non-constant and
satisfies the equation G,(a) = 0 for some a € K.

If K is the field of complex meromorphic functions , then the Weierstrass
p-function g is Weierstrassian over K.
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We assume that Ck is algebraically closed. Consider the projective curve
W given by the equation ZY? = 4X3 — g, X 7% — g373. Since 27g% — ¢3 # 0,
W is non-singular and hence an elliptic curve defined over Cx. Hence there
is an abelian group law on W. We write the group multiplicatively. W has a
unique point at infinity (0, 1,0) and this point is the zero of the group. In general
(a,b,1)7! = (a,—b,1). [Note: Henceforth when we consider affine points of W
we will use the standard affine coordinates.]

If G4(a) =0, then (o, "7’) eEw.

We use the following lemma from [Kolchin 2].

Lemma 9.3. Suppose G,(a) = 0 and Gy(8) = 0, where « and f§ are non-
constant. Suppose that (o, “7')(,3, %') = (v,6). Then 4’ = (a+b)é. In particular
either v is constant or v is Weierstrassian over K with (y')? = (a + b)?(46° —
926 — g3).

Suppose « is Weierstrassian with G4(a) = 0. Let L = K(a) and suppose
that Cp = Ck. Let 0 : L — K be a K-embedding,. )

Consider P, = (0(a), Z2L)(a, €)1 = (o(a), 2%2L)(a,~ ). P, € W and
P, =(0,1,0) if and only if o is the identity.

Suppose o is nontrivial. Let P, = (c1,¢z). By the previous lemma ¢} =
(a—a)cz. Thus c; is constant. It follows that c; is also constant. Thus for every
embedding o there is P, € W(Cxk) such that (o(a), ‘—’%"X) = Py(e, %'—)

Thus o(a) € (L,Ck) so L/K is strongly normal. Suppose o and 7 €
G(L/K). Then P, and P, are in L. But the differential closure of L has the
same constants as K, so these points are in W(Ckg). Then

(o7(a), #) = P,(r(a), l(ag)—/) = P, P, (a, %I),

Thus P,; = PyP;. Thus ¢ — P, is an embedding from G(L/K) into
W(Ck).

Let 9 isolate the type of a over K. The set {(c1,c2) € W(Ck) : ¥ holds of
the first coordinate of (c1, ¢2)(e, “7'))} is definable. Thus G(L/K) is isomorphic
to a definable subgroup of W(Ck). As W(Ck) is an irreducible variety (and
hence a connected group), the only proper definable subgroups of W(Ck) are
finite.

Suppose G(L/K) is finite. Suppose (3 is in F' the differential closure of L
and %(f) holds. Thus there is an automorphism ¢ of K such sending a to £.
This automorphism corresponds to an action of the group W(Cg). But then g
is already in L. Thus in F there are only finitely many solutions of 9, so «a is
algebraic over K.

Thus we have shown that if Ck = Ck(q) and a is Weierstrassian over K
it is either algebraic over K or G(K(a), K) is the group law of an elliptic curve
over Ck.
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We will next show that the Galois group of a strongly normal extension is
always an algebraic group over the constants.

Let L/K be strongly normal and suppose L = K(a). Let 9(7) isolate
t(a/K).

If 4(b), then there is ¢ € G(K/K) such that ¢(@) = b. Since L/K is
strongly normal, b € (L,Ck). In particular there is a K-definable function 95
and ¢ € Ck such that ¢;(@,c) = b. By compactness and the usual coding tricks
we can find a single K-definable function g such that for all b € ¢¥ there is
T € Ck such that b = ¢(g,?).

Let F be the differential closure of L (and K). If b € F, then any auto-
morphism of L sending @ to b lifts to an automorphism of K. Thus there is
T € Ck such that b = ¢(a,). By model completeness, there is ¢ € Cr such that
b = ¢(@,c). But Cr = Ck so there are constants in L such that b = ¢(a@,¢).

It is easy to see that o € G(L/K) is determined by its action on @. Clearly
¥(o(@)) and if (b), then there is 0 € G(L/K) with o(a) = b.

Consider the relation R(b, d,€), which asserts that if o(@) = b and 7(a@) = d,
then o o 7(@) = €. Then R(b,d, %) holds if and only if ¢(d) = . But there are
constants ¢ € Ck such that d = ¢(@,¢). But then o(d) = ¢(b,%). So

R(b,d,e) & p()) Ap(d)Ap(e) ATe N\ cj =0Ad=g(a,e) AT =g(5,2)

Let X be the set ¢ and define - on X by b-d = € if and only if R(b,d,e).
We have shown that (X, ') is isomorphic to G(L/K).

We can do even better. Let Y = {¢ € CFr : ¢(¢(a,c))}. We define an equiva-
lence relation E on Y by €, E7¢; if and only if g(a@,cp) = ¢(@,¢;). We also define a
ternary relation R* on Y by R*(¢,¢,¢2) if and only if
R(9(a,%0), 9(a,¢1),9(a,c2)). Clearly R* is E invariant.

Since CF is a pure algebraically closed field, Y, F and R* are definable in
the pure language of fields. By elimination of imaginaries we can find a field
definable function f : Y — C} such that TE¢, if and only if f(¢) = (o). Let
G be the image of Y under f. Define - on G by z¢ - ; = 3 if and only if there
are Ty, ¢; and ¢, € Y such that f(¢;) = z; and R*(¢p,¢1,T2). Then (G,) is
isomorphic to G(L/K) and (G, -) is definable in the pure field structure of Cr.
(Also Cpr =CL =Ck.)

In other words G(L/K) is isomorphic to a group definable in the pure
algebraically closed field Cx. The following theorem of van den Dries says that
any such group is definably isomorphic to an algebraic group.

Theorem 9.4. Let K be an algebraically closed field and let (G, -) be a group
definable in K. Then G is definably isomorphic to an algebraic group over K.

Thus we have proved the following theorem of Kolchin.

Theorem 9.5. Suppose L/K is strongly normal and K is algebraically closed.
Then G(L/K) is isomorphic to an algebraic group defined over Ck.
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Once we know that G(L/K) is an algebraic group over Cx. We can develop
a Galois correspondence between algebraic subgroups and intermediate fields.
Much of the Galois theory of theorem 8.3 generalizes

For strongly normal extensions L/K, we will also study the group
G((L,Ck)/(K,Cxk)). We will call this group the full differential Galois group
and denote it Gal(L/K). The above arguments show that if L/K is strongly
normal then Gal(L/K) is an algebraic group over Ck. In particular, there
is an algebraic group G defined over Ck such that G(L/K) = G(Cgk) and
Gal(L/K) = G(Ck), (where for F' D Ck, G(F) denotes the F-rational points
of G).

We will identify Gal(L/K) with G(Ck). The above arguments show that
there is a map v : Gal(L/K) — G(Ck) such that o(a) € K(a,v(c)) and (o) €
K(a,o(a)) for all 0 € Gal(L/K),.

We next make a careful choice of the generator of L/K which will prove
useful later.

Definition. Let L/K be strongly normal and let F' be the differential closure
of K. We say that a € L is G-primitive if and only if « € G(L), L = K(a) and
for all ¢ € G(F/K) a—1o(a) € G(Ck).

Lemma 9.6. Let K be algebraically closed. Every strongly normal extension
L/K is of the form L = K(a), where a is G-primitive.

Proof.

Since L is contained in the differential closure of K and L/K is finitely
generated, L/K has finite transcendence degree. Thus we can find @ € L such
that L = K(a). For any ¢ € Gal(L/K), o(a) € K(a,y(s))= K(a,v(s)) and
1(0) € K(@,0(@)= K(3,0(a)).

Let b, realize ¢(@/K) such that b, are independent over L. Let 7(a@) = b.
By the above remarks there is a ratlonal function F over K such that F(@,b) =
4(r). This F will work for independent realizations of the ¢(a/K). In particular
F(e,b) - F(@,e) = F(a,b). Let V be the K-variety such that @ is the generic
point of V. Then b is also a generic point of V over the field L(¢). Thus
the equation F'(¢,%) - F(a,¢) = F(a,Z), must hold on a Zariski open subset of
V. In particular we can find d € K such that F(c d) - F(a,¢) = F(a,d) and
F(a,d) € G(L) (Here we use the fact that if K is algebraically closed, L D K
and V is a variety defined over K, then the K-rational point of V are Zariski
dense in the L-rational points). We let a = F (@, d).

Let ¢ € Gal(L/K). We may as well assume that the ¢ chosen above was
independent of (@) over K. Thus (a,¢/K) = t(¢,0(a)/K). Hence F(o(a),d) -
F(¢,0(@)) = F(¢,d). So F(o(a),d) - F(¢,0(a)) - F(a,©) = a. But F(c,0(a)) -
F(a,?) = 7(¢) and F(o(a),d) = o(c). Thus o(a) = o -y(0)~?, as desired.

Finally we note that L = K(a). If a ¢ K(a), there is 7 € Aut(K/K) such
that 7(a) = a but 7(a) # @. Thus 0 = 7|L € Gal(L/K) and ¢ # 1. But since
o(e)=a, a=a-y(s)"1, so y(¢) = 1 and o is the identity.
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The converse to 9.5 is also true.

Lemma 9.7. Suppose K is a differential field with Ck algebraically closed. Let
G be an algebraic group defined over Ck. Let F be the differential closure of K.
Suppose there is @ € G(F) such that for all ¢ € G(F/K) there is g, € G(Ck)
such that o(e) = a - g,. Let L = K{a~!). Then L/K is strongly normal.

Proof.
Let 0 € G(F/K), then o(a™!) = g,-1-a~1. Let 1 isolate t(a~'/K). Then

FE Vy(#(y) »3g€GC)y=9g-a7).

This sentence is still true in K. Thus for any automorphism o, (L,Ck) =
(¢(L),Ck). So L/K is strongly normal.

Let T'(K) be the coset space G(K)/G(Cxk). By elimination of imaginaries
in K, we may assume that I'(K) is a quantifier free Cx-definable subset of
K™. For any field L D Ck let T'(L) denote the L-rational points of I'(K). Let
p : G(K) — I'(K) be the quotient map. If F is the differential closure of K,
then I'(F) = G(F)/G(Ck).

Lemma 9.8. Let o € G(F). Then o is G-primitive if and only if p(a) € T'(K).

Proof.

Clearly p(a) € T(K) if and only if p(a) is fixed by all elements of G(K/K)
if and only if a~! - 0(a) € G(Ck) for all 0 € G(K/K). By the last lemma this
is if and only if « is G-primitive.

Our next goal is to show that if G is a connected n-dimensional group, then
I'(K) is essentially K™. This will require some background work.

Let F/K be fields and let D(F/K) be the space of derivations of F' which an-
nihilate K. Let z1,..., 2z, be a transcendence base for F/K. Then 8371, . %
is a basis for D(F/K) as an F-vector space.

First note that if a,...,a, € F and D = Ea;aiz', and D = 0, then for

each i, D(z;) = a; = 0. Thus -62—1, een, a%' are linearly independent.

Next we consider the case F' = K(z1,...,2,). If D € D(F/K) then for
p(z1,...,zn), D(p(T)) = ZD(:L';)(%'—. Thus D =% D(:c,-);,,%.
In general if y is algebraic over K(Z) with minimal polynomial p(Z,y), then

0= D) = 3 D(a)5E + D)3

So ’
-2 D(zi)3E
Dly) = ———
oy

Thus there is a unique way to extend a derivation on K(%) to F. Thus D(F/K)
is an n-dimensional F' vector space.
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Let V C K™ be an n-dimensional variety over K. Let K (V) denote the
field of rational functions on V, K (V) K[X]/I(V). For p € V, let O, denote
the local ring at p, ie. O, is the ring of rational functions defined at p. We
choose affine coordinates at p so that zi,...,z, € Op.

We say that 6 : O, — K, is a local derivation at p, if § is an additive
homomorphism and é(f1f2) = fi(p)é(f2) + fo(p)é(f1). For example if D €
D(K(V)/K) and D : O, — O, we define a local derivation D, by D,(f) =
D(f)(p). We let T,(V) equal the set of all local derivations at p.

Let fi,..., f,, be generators for I(V). If 6 is a local derivation at p, then

0=D(fi)=Y 5& (P)5(xz)

Thus é(z1),...,6(zm) are a solution to the system of equations
o) - :j:,, ®)
(yly"')ym) =0.
%,Lﬁ’(p) S 2y

Thus T, (V) can be viewed as the tangent space at p. In particular if p is a simple
point on V, then %(V) is an n-dimensional vector space over K.

Clearly each ax :0p — Op. Let zy,...,z, is a transcendence base for
K(V)/K, then, by the above argument, the 6%;,,’ e -a#z:p are linearly indepen-

dent over K, and hence a basis for 7, (V).
We next examine the case where G is a connected n-dimensional algebraic
group.
For a € G we let T, : G — G be the map z — az. For a,p € G, T, induces
T; 2 Oap — Op, by Ty f = foTg,. If D is a derivation of K(G)/K, then let
TaD, be the local derivation at ap given by T, Dy(f) = Dp(T f). We say that
D is invariant (actually left-invariant) if for all a,p € G, ToDp = D,p. We let
L(G) be the K-vector space of
invariant derivations. We call £(G) the Lie-algebra of G.
Let 1 be the identity of G. We claim that £(G) is isomorphic to 7;(G) via
the map D +— D;. We need only show that this map is surjective.
Suppose § € T;(G). We define D as follows. For f € K(G) we define f’ by
f'(z) =68(T; f). Let D(f) = f'. We claim that D is a left invariant derivation.
If f,9 € K(G),
D(f +9)(=) = §(T7 (f + 9))
=6T; f+T79)
= f(z) +¢'(2).

D(fg)(z) = §(T7 (f9))
=6(T3 f139)
=T, T, 9+ 6(T;9)T; f
= fl(z)g(z) + ¢'(2) f(2)

So D is a derivation.
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Finally,
(TaDe)f = Do(T5 f)
= (D(TZ f))(=)
=§T;T5f)
= 8(Tasf)
= Das(f )
since T; Ty = Ty,. So D is left invariant.

Thus £(G) is isomorphic to 7;(G), the tangent space of G at 1.

Let F/K be of transcendence degree n. Say z,...,z, is a transcendence
base. We let Qp/x be the F-vector space of differentials on F' over K as intro-
duced in §6. Then Qp/k is an n-dimensional K vector space and dzy,...,dz,
is a basis. In fact, Qp/k is the dual space of D(F/K), ie. Qp/k is the space
of F-linear maps from D(F/K) — F. Each dz can be thought of as the map
dz(D) = D(z). f ® : D(F/K) — F, let K; = ®(3%-). Let w = }_ Kdz;, then
w is induced by the map &.

If V is a variety and p € V we consider the space of local differentials at
p. This is the dual space of the tangent space 7,(V). Let w be a differential
of K(V)/K, say w = Y gidf;. We say that w is finite at p € V if all of the
9i, fi are defined at p. In this case w has a local component w, defined by
wp(8) = X 0:()6(f:):

If G is a connected algebraic group, we say that w is an tnvariant differential
if and only if it is in the dual space of £(G). The space of invariant differentials
is isomorphic to the space of local differentials at 1. Moreover if D!,..., D" are
a basis for £(G), then w?,... ,w" is a basis for the dual space where

iy f1 ifi=j;
“’(D])‘{o itj

Suppose k C K and V is defined over k. We may choose the transcendence
base z1,...,Z, such that z; € k(V). In this way we may assume that all of
our bases are defined over k. If § € D(K/k) and p € V, then é determines
an element 6, of the tangent space of V at p by 6,(f) = 6(f(p)). fw is a
differential on V' defined over k and well defined at p, then w,(6,) is defined and
in K. Then map é — wy(6,) is a differential of K/k which we will call w(p)
the induced differential of w at p. More specifically, if w = Y g; fi where g; and
fi € Op NKE(V), then w(p)(8) = 3~ gi(p)5(fi(p))-

If G is a connected algebraic group and 3 € G(K) let 7(8) : G — G by
7(8)(z) = BzB~!. In the manner we discussed above 7(83) induces automor-
phisms 7(8)* : K(G) — K(G) and 7(B) : £L(G) — L(G). In general a map
¢ : L(Go) — L(Gi) induces ¢* mapping the invariant differentials on G; to
the invariant differentials on Go. Thus we have 7(8)* an automorphism of the
invariant differentials on G.

The next result shows the compatibility of the group operations with form-
ing induced differentials from invariant differentials. We postpone the proof to
Appendix B.
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Theorem 9.9. Let o,f € G(K) and let w be an invariant differential on
G. Then w(a - B) = (1(B)*w)(a) + w(B). In particular if G is abelian, then
wle ) = w(@) +w(P).

We now return to the following setting. K is an algebraically closed differ-
ential field and G is a connected algebraic group defined over Cx. We let D be
the derivation on K. Ck plays the role of k in the above discussion.

Lemma 9.10. Let o € G(K). Then o € G(Ck) if and only if for every invariant
differential w on G, w(a)(D) = 0.

Proof.

First, if @ € G(Ck), then for any f € Cx(G) N Oq, D(f(e)) = 0. Since,
the space of invariant differentials has a basis of differentials defined over Ck,
this implies that every invariant differential vanishes at D.

Conversely, if @ ¢ G(Ck), then there is a local coordinate ; such that
zi(a) € Ck. The local differential dz; on G translates to a local differential at
1 and this extends to an invariant differential w on G. But then w(a)(D) =

D(zi(a)) # 0.

Corollary 9.11. Let a, 8 € G(K). Then o - ! € G(Ck) if and only if for
every invariant differential w on G, w(a)(D) = w(B)(D).

Proof. Let vy = a - 8~1. By 9.8,for all w

w(@)(D) =w(¥B)(D)
= 7(B)"w(1)(D) + w(B)(D).

By 9.9, 7(8)*w(y)(D) = 0 for all w if and only if ¥ € G(Ck) (since 7(3)* is
an automorphism of the invariant differentials).

If G is an algebraic group defined over Cx. Let wy,...,w, be a basis for
the invariant differentials on G, such that each w; is defined over Cx. For
a € G let hi(a) = wi(a)(D). If w = 5 gidf; where the g;, fi € Ck(G), then
w(a)(D) =) gi(a)D(fi(e)). Thus f; is definable in the differential field K. Let
F : G(K) — K™ by F(a) = (hi(a)...ha(a)). By 9.10, F(a) = F(B) if and
only if «3~! € G(Ck). Thus the image of F' can be identified with the quotient
G(K)/G(Ck) = I'(K).

In particular,

Corollary 9.12 I'(K) = G(K)/G(Ck) can be embedded into K”.

References
All of the results in this section are due to Kolchin. They can be found in
[Kolchin 2,5,6]. The proof of Theorem 9.5 that we give here is due to Poizat
[Poizat 3]. Poizat’s book Groupes Stables contains Hrushovski’s elegant model
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theoretic proof of van den Dries theorem (9.4). The treatment we give here on
G-primitives is taken from [Pillay-Sokolovi€].

The basic results on derivations and differentials on algebraic groups can be
found in [Rosenlicht 3]). The commutative case of Theorem 9.8 was proved by
‘Rosenlicht while the general case is from [Kolchin 6].

§10.Superstable differential fields:

We would like to prove the differential analogs of the following theorems
about algebraically closed fields. We know that the theory of algebraically closed
fields is quantifier eliminable and w-stable. These results of Pillay and Sokolovi¢
give partial converses.

Theorem 10.1. i) (Macintyre-McKenna-van den Dries) If K is an infinite field
and the theory of K admits quantifier elimination in the language of fields, then
K is algebraically closed.

ii) (Cherlin-Shelah) If K is an infinite field (possible with extra structure)
and the theory of K is superstable, then K is algebraically closed.

It would be natural to conjecture that any quantifier eliminable or super-
stable differential field is differentially closed. This question is open. We first
note that the quantifier elimination question is subsumed by the superstability
question.

Lemma 10.2. If T is a quantifier eliminable theory of differential fields (in the
language of differential fields), then T is w-stable.

Proof.

Let K = T. By quantifier elimination any type over K is determined by the
set of quantifier free formulas in the type. Thus an n-type is determined by the
ideal of differential polynomials in K{Xj,...,X,} that vanish at a realization.
Thus the number of types is equal to the number of prime differential ideals over
K. By the Ritt basis theorem, every prime differential ideal is finitely generated.
Thus there are only |K| types over K. Thus K is w-stable.

In this section we will prove the following theorem from [Pillay-Sokolovi¢].

Theorem 10.3. If K is a superstable differential field with a non-trivial deriva-
tion (we allow the possibility of extra structure), then K has no proper strongly
normal extensions.

We begin by summarizing some of the Berline-Lascar [Berline-Lascar] theory
of superstable groups which we will use in the proof.
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Lemma 10.4. (Berline-Lascar) If K is a superstable field then for some ordinal
a and some natural number m, RU(K) = w%m.

Definition. Suppose G be a superstable group and A C G is oo-definable. We
say that A is a-indecomposable if A/H has only one class for any definable
subgroup H with RU(A/H) < w®.

Theorem 10.5. (Berline-Lascar Indecomposability Theorem) If RU(G) = w®*n
and (4; : ¢ € I) is a family of co-definable a-indecomposable sets each containing
the identity of G, then the group H generated by the A; is co-definable and H
is of the form Aﬁl ... Aﬁl.

Finally we recall Lascar’s U-rank inequality. Here @ denotes the Cantor
sum on the ordinals.

Theorem 10.6. (Lascar’s Rank Inequality):
RU(a/Ab) + RU(b/A) < RU(a,b/A) < RU(a/Ab) ® RU(b/A).

Let K be a saturated superstable differential field with RU(K) = w*m. By
Theorem 10.1 ii), K is an algebraically closed field. The Cherlin-Shelah analysis
of superstable fields also shows that any superstable field has a unique type of
maximal rank. We call this the generic of K.

Corollary 10.7. i) RU(Ck) < w®.
i) RU(z/2') < w®.
i) If A C K and a € K is generic over A, then a’ is generic over A.

Proof.
i) Ck is an algebraically closed field, so K is an infinite dimensional vector space
over Ck. Thus for all n RU(K) > RU(C%) = RU(Ck)n. Thus RU(Ck) < w®.

ii) Clear from i) since Ck is the kernel of the derivation.
iii) By the U-rank inequalities,
RU(z/A) < RU(z,2'/A) < RU(z/Az') ® RU(z' /A).
Since RU(z/A) = w¥m, ii) implies that RU(z'/A) = w*m.
Lemma 10.8. Let A C K and let a € K be generic over A. Then a is

differentially transcendental over A.

Proof. Suppose not. Then we can find ¢ and n such that a®*) is strongly
algebraic over A,a0+D ... a(®. Thus a® is algebraic over AaC+1). By 10.7
iii) a® is generic over A. Thus since a and a(¥) realize the same type over 4, a
is algebraic over Aa’. But for any constant ¢ € Cx, RU(a + c/A)® RU(c/A) >
RU(a + ¢,¢/A) > RU(a/A). Since RU(c/A) < w®, RU(a + ¢/A) = w¥m, so
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a+ c is generic over A. Thus t(a+c,a’/A) = t(a, d'/A). Since Ck is infinite this
contradicts the fact that a is algebraic over Aad’.

We can in fact prove something stronger.

Lemma 10.9. Let A C K and let a € K be differentially algebraic over A, then
RU(a/A) < w°.

Proof. We may without loss of generality assume that A | Th(K) and (by
taking forking extensions) that RU(a/A) = w®. Let p = t(a/A).

Let ® = {z € K : z realizes p}. Fix b€ ®pand let ® = {z —b:z € ®o}.
Since p is stationary, ® is a-indecomposable with respect to additive subgroups
of K. For each z € K let &, = 2®. The ®, are a-indecomposable and contain
0. By 10.5 the additive subgroup H generated by the ®, is oo-definable and
there are zy,...,2, € K such that H = ®,, +®,,...+ ®,_. Since zH C H for
all z € K, H is an ideal. Thus H = K.

Let y € K be generic over A(b,z1,...,z,). There are y1,...,yn realizing
p such that y = 5 z;(y; — b). But then, since the y; are differentially algebraic
over A, y is differentially algebraic over A(b,Z) contradicting the genericity of y.

We will prove that K has no proper strongly normal extensions. Let A be a
very saturated differentially closed field containing K. It suffices to show that for
G an algebraic group defined over Ck if T'(A) is the quotient space G(A)/G(Ch)
and p : G(A) — I'(A) is the quotient map, then p maps G(K) onto I'(K).

Lemma 10.10. Let G be a connected n-dimensional algebraic group defined
over Cx. Then RU(G(K)) = w*mn and every orbit of I'(K) under'the action
of G(K) has U-rank w*mn.

Proof.

The first remark is clear. More generally if V' is an n-dimensional algebraic
variety over a superstable field F', then RU(V) = RU(F)n.

Let z € T'(K). Let Stab(z) = {9 € G(K) : gz = z}. Let F be the
differential closure of K. There is h € G(F') such that h/G(Cfr) = z. Since
Cr = Ck, g € Stab(z) if and only if h~'gh € G(Ck) if and only if g €
hG(Ck)h!. Since RU(Ck) < w®, RU(Stab(z)) < w®.

The orbit of z € I'(K) under G(K) is isomorphic to G(K)/Stab(z). Using
the U-rank inequality we see that each orbit has U-rank w®mn.

Since RU(G(K)) = w*mn and RU(G(Ck)) < w*. By the U-rank inequal-
ity we must have RU(T'(K)) = w*mn. Thus there are only finitely many orbits
of I'(K) under G(K). We will show that there is exactly one. In this case
p:G(K) — I'(K) is onto and we are done.

To prove this it suffices to show that ['(K) has a unique generic type. By
9.12, T(A) € A™. Thus I'(K) C K". But I'(K) has rank w®*mn = RU(K").
Since K™ has a unique generic type, I'(K') has a unique generic type.
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Appendix A: Seidenberg’s Embedding Theorem

In [Seidenberg 1,2] Seidenberg proved that any countable differential field
can be embedded into a field of germs of meromorphic functions. This follows
from an embedding lemma for finitely generated differential fields.

Let Mer(U) denote the field of meromorphic functions on U, for U C C
open.

Lemma A.1. Let K = Q(u;...u,) and K; = K(v). Suppose U is an open
ball in C and 7 : K — Mer(U) is a differential field embedding. Then there is
an open ball V C U and an extension of 7 to an differential embedding of K
into Mer(V).

Corollary A.2. Let K be a countable differential field. Then K is isomorphic
to a subfield of the field of germs of meromorphic functions at the origin.

proof. By viewing K as a limit of finitely generated extensions and iterating
A.1 we can find a point = such that K can be embedded into the germs of
meromorphic functions at . By changing coordinates we may assume z = 0.

The proof of lemma A.1l, uses the following “primitive element theorem”
from [Seidenberg 3]. Which we will prove shortly.

Theorem A.3. Suppose K is a differential field with a non-constant element.
If v and v are differentially algebraic over K, then K(u,v) = K(u+ Av) for some
AEK.

Proof of A.1. Let g; = 7(u;). By shrinking U we may assume that each g; is
analytic on U. Let @ € U such that f(a) # 0 for all f € Q(g1,-..,9m) \ {0}
Changing coordinates we may assume that @ = 0. Let g;(z) =3 c;; -"J—’, forzeU
(shrinking U if necessary). Note that gfj )(0) = ¢; j. By choice of a, f — f(0) is
a field embedding of Q(g1, ..., gn) into C with g ¢; ;. As fields

Q(gla“')gn> EQ(cl’,j ZS n,j ECU)
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case 1. v is differentially transcendental over K.

Choose dy,d;,d, ... € C algebraically independent over Q(¢; j.i < n,j € w)
and such that h(z) =Y dj’;.—; converges on a neighborhood of V C U of 0. We
claim that h, k', ... are algebraically independent over Q(g; ...gn). Suppose p
is a polynomial with coefficients in Q such that

p(gl;gi)' -wggl),---,gmg:”--'y,(,l),h,---,h(m)) =0.

Then
P(Cl,o,cl,l, <3 C1ly--+3Cn05Cn1,s - ..Cn,[,do, .. )dm) =0.

Since the d; are algebraically independent p(¢,Yy,...,Yn) is identically zero.
Thus by the isomorphism above

M

p(glyglh"')gl "')gﬂ’g;n'"ggl))YOa"')YM)

is identically zero. Thus h is differentially transcendental over Q(g1, ..., 9,) and
Kl = Q(gh .. ':gn)h)'

case 2. v is differentially algebraic over K.

Without loss of generality we may assume that K has differential tran-
scendence degree at least one over Q (use case 1 to extend K if necessary). Let
U1,...,U,_1 be a differential transcendence base for K and let Ko =
Q(u1,...,un—_1). By the primitive element theorem there are u, and v such
that K = Ko(u,) and K; = Ko(v). Let r be maximal such that v,7/,...,»("=1)
are algebraically independent over K. Let p be an irreducible polynomial with
coefficients in Q such that

plur,uf, ul, . unoy, g, ul) v, 0 0TD)Y)
is the minimal polynomial of v(") over Ko(v,v', v("l)).

Let do,...,d-_; be algebraically independent over Q(c; ;.1 < n,j € w).

Since the c; ; are algebraically independent,
p(cl,Cl,/ ;Cgl), <-3Cn—1, C:,‘_I, .. -cg)_lydm e )dr—lyy)
is irreducible. Let d, be a zero of it. Then %}(E, do,...,dr) #0.

By the implicit function theorem there is W an open neighborhood of
(¢,do,...,dr—1) and an analytic function F : W — C such that
F(S,do,...,dr_1) = dr and p(w, f(w)) = 0 for all W € W. Consider the dif-
ferential equation:

v = F@01(2), 912, 9172, 20019, 91 (2), 00021 (2),ws 0.

We can find a solution h which is analytic on a neighborhood of 0 such that
for R()(0) = d; for i = 0,...,r. Sending v to h, gives 7* an embedding of K;
extending 7|Kp. Unfortunately, we might have 7*(u,) = g% # gn.
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Let d; = hU)(0) for j > r. By shrinking (and shifting) U, we may assume
that g, is analytic on U and y;‘; = Zc:,j-’;%. Thus the map sending u,(] ) to Ci j
for i < n, ua(j) to c;, ; and v0) to d; is a field isomorphism from K; to

* *
Q(CI,O)CI,I)"~)cn—1,0)cﬂ—1,1)"')cn,O)cn,l)'"7d07d1:~'°)'
Since
* * ~
Q(cl,O)cl,ly oo ;Cn—l,O,cn—l,l; .. ')cn,O’cn,ly . ) -
Q(e1,0,€1,1, -1 €n=1,01Cn=1,15- - - ,Cn,0,Cn,1, - - -),
we can find dg,d],. .. such that
* *
Q(cl,o,cm, ey c,._l,o,c,,_l,l, [SPN ’cn,O’cn,l’ e ,do,dl, .. ) =
Q(cl,O;cl 1,-++3Cn-1,0,Cn-1,1,---,Cn,0,Cn,1, - -)d:;)diy .. )
Let hi(z) = Y. d!Z. Let Fi be a function analytic near (Z,dj,...,dr—1)

giving a branch of p = 0 such that F (E,;l-*) = dy. Then h; is the unique formal
solution to

¥ = F(g1(2), 04(2), 8(2), -+ s Gno1(e) Ta1(2)s -« s un 1 (1)(2), 9 -, 9" D)

with y(0) = d3, ..., y(")(0) = d*. Since the initial value problem has a convergent
solution near the origin, h; must converge on a neighborhood of 0.

It is easy to see that mapping v to hy extends 7 to an embedding of K into
Mer(V) for some open ball V C C.

We now examine the primitive element theorem. First, note that some
assumption on K is necessary. If K contains only constant elements and L =
K (u,v) where u and v are algebraically independent constants. Then clearly no
u + Av generates L/K.

The proof uses the following lemma due to Ritt.

Lemma A.4. Let K be a differential field and let £ € K with &’ # 0. Let G(X) €
K{X} be nontrivial of order n, then there are rational numbers ¢y, ...,c, such

that G(3_ ¢;€') # 0.

Proof.

Suppose not. Let H(X) be of minimal order r such that for all ratio-
nals cg,...,cn H(Y ci€) = 0. Let h(Yy,...,Y;) € K[Y] such that H(X) =
R(X,X',...,X"). Let U; = 3 Z;(£)0). Let 9(Zo,...,2Z,) = h(U,...,U,).
Then H(Z c;f‘) =g(co,-.-,Cn).

Since g vanishes on Q”‘H, g is identically zero (as Q" is Zariski-dense in
K™). Thus a—azg— = 0 for each j.

Thusforj:O,...,r
Z oh 3Uz _
oU; 3ZJ 0.
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For j = 0 we get
Oh

Uy

Z aU, fj(t

From this we see that the vectors

€€, €)L)€
are linearly dependent. By lemma 4.1 they are linearly dependent over Cj. Thus

> b;€" = 0 for some constants by, ...,b, where not all of the b; are zero. Since
£ is algebraic over Ck (by 2.1), £ € Ck, a contradiction.

=0

and for j > 0

Proof of A.3.
Consider K (u,v)(X). u+ vX is differentially algebraic over K(X). Let G
be irreducible such that

GX, X',..., X" (u+vX),...,(u+vX)*®) =0 (1)
and s is minimal. © ©
Let w=u+vX. Fori<s 57";-(77_0. While for i =5 —"’(—;—v
Implicitly differentiating (1) with respect to X(*) we get
0G oG
x® 1 50"
Because of the minimality of G, m is not identically zero. By lemma

A4, we can find A € K such that a%wc;;()\,u + vA) # 0. Using (2) we see that
u,v € K(u+vl).

=0. (2)

Appendix B: The proof of 9.8

In this section we will give Kolchin’s proof of Theorem 9.8.

First suppose G and H are algebraic groups defined over an algebraically
closed field K, f : G — H is rational and £ € G. As usual we have f* :
K(H) — K(G) by f*g = go f. This in-turn induces f : 7;(G) — T;(;)(H), by
fé(g) = 6(f*g). Using the isomorphisms between the tangent spaces and the
Lie-algebras we obtain f¥# : £(G) — L(H).

In particular if § € 7;(G) and let D € £L(G) be such that D, = §, then f2D
is the element E of L(H), such that Ej;) = f6.
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Lemma B.1: Suppose f : G — H is a homomorphism, then f# does not
depend on z.

proof: N - ~
Let § € 7,(G) and let D € £(G) be such that D, = 6. Let D = f#D.
For h € 0.

D1(h) = Ty(z)-1 Dy (s)(h)
= Dy(@)(Tj(z)-1h)
= Dyo(t = h(f(z7)))
= fDs(t = h(f(z~1)1))
= Dy(t = h(f(z7)f(1)))
= Da(t = h(f(z7'1))).
Suppose E = flfﬁ. Then

E1(h) = Da(t = h(f(y'1)))
= Tyo-1 Do ((t = h(f(y~'1)))
= Do ((t — h(f(y~'yz™'1)))
= Di(h).

Thus Dy = E,so D=F.
If f:G— G, and g : G; — G5, then (gof)f:gf(z)off.

Lemma B.2: a) If f : G — H is constantly c, then f# = 0.
b) Let T, be left multiplication by v, then (T, )# is the identity on £(G).

proof:

a) Let § € 7,(G) and let D € £(G) be such that D, = §. Let E = f#D.
Since ¢ € K, Ey)(h) = f6(h) = 6(h(c)) = 0 for all h € Of(s). Thus Ej(,) is
the trivial tangent vector. So F is the trivial derivation.

b) This is clear since (T;,)# D, = D, for D € L(G).

We fix v a point on G. To simplify notation we will refer to the maps f# as
f. [If for a particular map (a non-homomorphism) it is important which tangent
space we use to define the map we assume we use the base point v.]

We consider the following maps:

-i1,i3 : G — G x G by i1(z) = (z,v), i2(z) = (v, z).

-A : G — G x G is the diagonal map z — (z, z).

-m,m3 : G X G — G are the projections, m;(z1, z2) = z;.
-t : G — G is the identity.

-€ : G — G is the zero map.

-Ay : G — G is right multiplication = — zv.

- :Gx G — G by Y(z,y) = cy~1.
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-for v € G 7(v) : G — G by conjugation, z +— v~ 1zv.

Lemma B.3: £(G x G) = i1 L(G) @ i2.L(G).
proof:
Clearly i; is injective.
Suppose i1 D + i3 E = 0. Then
D=iD+¢E ‘
= 7I'11:1D+ WlizE, by B.2 a)
=mi D+ irE)
=0.
Similarly £ = 0.
Thus i1 £(G) @ i2L(G) has twice the dimension of £(G), and hence is equal
to L(G x G).

Lemma B.4: A =4 + is.
proof:
Let D € £(G). We will show that for all g € K(G), (AD—i,D—i3D)n}g =
0. Since K(G x G) = 71 K(G) ® 73 K(G), this implies (AD — ;D — i, D) = 0.
First, suppose f € Oy, then
(AD — 11D — igD)(lyl)ﬂ';f =7+ 1(AD -4 D - izD)(l’l)f
= (7I'1AD - 7l'1i1D - 7l'1i2D)(1,1)
= (iD—1iD —eD)u,1)f
=0.
Now let g € O;.
(AD - llD - izD)ﬂ':y(S,t) = (AD - ZlD hd ’izD)(,’t)ﬂ';g
= (AD - ZlD - izD)(l’l)ﬂ';Trg
= 0 (by the claim above).

Thus for all g € K(G), (AD —i;D —i;D)mg = 0. The same is true for 5.
Thus by the above remarks, for all D AD —4;D —i3D = 0. So A =14; + 1».

Lemma B.5: A\, oY = m — m5.

proof:

For any z € G A, o9 0 ¢3(z) = . Thus A, o ¢ 0 ¢; is the identity map i.

On the other hand for any z, A, o4 o A(z) = v. Since this map is constant,
the it induces the trivial endomorphism of the Lie-algebra.

By lemma B.4, A\, o 0ip = A, 0¢p o (A — ;). By the above remarks, this
is —1.

Thus (A, oy + mp —m)oi; =i+0—37=0and (A\yop+m —m )0
=-1+4:-0.
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Thus by lemma B.3, Ay o9 = m — m3.
Lemma B.6: A, = 7(v).
proof:
Ay = Ty7(v), but T, acts on L(G) as the identity.

For 6 € D(K/k), we define a tangent vector at v 16(v), the logarithmic
derivative by 16(v)(g) = 6(g(v)). If f is any rational map, then, of course

F(16(v)) = 16(f(v))-
Lemma B.7: 1§(zv) = 7(v)lé(z) + 16(v).
proof:
r(v)l8(z) = A 16(p(zv,v))
= A, o Ylé(zv,v)
= m — malé(zv,v)

= l6(zv) — 16(v).

Finally, suppose w is an invariant differential on G. If z € G, w,; is the local
component of w at z. We defined the induced differential w(z) on D(K/k), by

w(z)(8) = wz(lé(z)). o
In particular if z,v € G(K), w(2v)(8)wzv (16(xv)) By B.7 this is

wy-120 (T(V)I6(2)) + wo (16(v)),

which is
7(v)* wz (16(z)) + wy (16(v)) = (7(v)*w(z) + w(v))s.

Thus we have proved:

Theorem 9.8: If z,v € G(K) and w is an invariant differential on G, then
w(zv) = 7(v)*w(z) + w(v).

Appendix C: Kolchin’s Irreducibility Theorem

This appendix is devoted to the following theorem of Kolchin.

Theorem C.1. Let K be an algebraically closed field with derivation D. Sup-

pose V C K' is an irreducible algebraic variety defined over K. Then V is
D-irreducible.
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Suppose V is an irreducible variety. Suppose (Z,y) € V is a generic point
of V' where we (without loss of generality) we may assume that z;,...,z, are
algebraically independent and y, . . ., Y, is algebraic over K(Z). Fori=1,...,m
let p;(Z,Y’) be the minimal polynomial of y, over K(Z). An easy induction shows
that for all n,

Opi _ . -
ygj)a_};(z’ y) = ri,j(xyil) v )E(]): yi)y£) cey y? l))
for some polynomial r; ; with coefficients in K.

If (Z,7) is a D-generic point of V (ie. a point of maximal Morley rank in

K), then Z,7,7?, ... are algebraically independent and

K(z,3) = K(z)(¥).

Thus there is a unique D-generic type.

Since an irreducible algebraic variety has a unique D-generic type there is
a unique D-irreducible component of maximal rank. We will need to do a bit
more work to show that there is only one D-irreducible component.

Suppose L D K are differential fields and @,becL" WesaythatG—bisa
differential specialization over K if f(b) = 0, whenever f € K{X} and f(a) = 0.
We will use the following lemma on specializations.

Lemma C.2. Let K be an algebraically closed field with derivation D. Let
V C K™ be an irreducible variety defined over K, p & I(V), and let « € V
be a K-rational point. There is a differential field extension L O K and # an
L-rational point of V such that p(8) # 0 and there is # — « is a differential
specialization over K.

proof:

If dim V > 2, let H be a hyperplane through a not contained in V(p). Let
W be an irreducible component of V N H through «. Then dim W = dim V —1
and p ¢ I(W). Thus without loss of generality we may assurne V is a curve.

If V is not smooth there is a smooth curve W and a polynomial map o :
W — V. Let o* € W No~!(a). Suppose there is a differential field L D K and
B* an L-rational point of W such that p(¢(8)) # 0 and §* — «* is a differential
specialization over K. Let 8 = o(6*). If C is any D-closed set defined over K
and f € K, then 8* € 0~1C. Hence o* € 0~!C and o € C. Thus 8 — «a is
the desired specialization. Thus without loss of generality we may assume V is
a smooth curve.

Let O, be the local ring of regular functions at « and let M, be the maximal
ideal of functions vanishing at . Since V is smooth M,/M2 is a one dimensional
K-vector space. Let t € My be a generator for My/M2. Let K(V) be the
function field of V, there is a unique derivation D : K(V) — K(V) extending
the derivation on K with D(t) = 0.
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There is a natural embedding of K(V) into the field of formal Laurent
series K((t)) sending 0, into K[[t]] and M, into tK[[t]]. Consider the derivation
6 defined on K ((t)) defined by

(Z ) ZD(a,)t’

i=m

Clearly §(K[[t]]) C K][[t]] and 6(tK[[t]]) C tK[[t]]. Since there is a unique
derivation from K (V) to K((t)) extending D and sending ¢ to 0, we must have
D:0,—04yand D: M, — M,.

Let 7 : O — K be the evaluation map f +— f(a). If f € O,, then for some
a€ K,and g € M,, f =a+g. Then

m(D(f)) = =(D(a) + D(9))
= D(a) + m(D(g))
= D(a)
since D(g) € M. Since D(a) = D(«f), # commutes with D, thus 7 is a differ-
ential specialization.

Let L = K(V). Let 8 = (1,...,2,) € L be the coordinate functions.
Clearly m(8) = a. Since p is not identically 0 on V, p(8) # 0.

We now give the proof of C.1.
Let p; and r; ; be the polynomials described above. If (Z,7) is any point of
V, then p;(@,v;) = 0 and

0 .
(]) pi (1,' y) - ra,](x T, _f(])yyi)yév-‘wyzj 1))

for all j.
Let

m
p(X,Y) = Hp,-(Y,Yi).
=1
For any f(X,Y) € K{X,Y} there is a polynomial g with coefficients in K and
natural numbers s and t such that if p(Z,3) # 0, then

9(575,) e JE(S)’y)

f T,y)= —
=9) p(Z,7)!

Suppose (7, 7) € V is D-generic and f(@,7) = 0. Then g(7,@,...,a*),y) =
0. Since T, @,...,a(*) are algebraically independent,

9(X, X, X F) = ho(X, V)0 (X, Y)

where hg € K[X, ... —(’ ,Y] and h; € K[X,Y] and h; € K[X,Y] vanishes on
all of V. It follows tha.t if f € K{X,Y} vanishes at the D-generic of V', then f
vanishes on {(Z,7) € V : p(T,7) # 0}.
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Since for any o € V, we can find L C K and an L-rational point 8 in
V'\ V(p) with 8 +— «a a differential specialization, it follows that any f(X,Y)
which vanishes on the D-generic of V' vanishes on all of V. Thus if W is the
D-irreducible component containing the D-generic, we must have V = W.
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