LECTURE 1. MOTIVATION

The aim of this course is to be an introduction to some techniques based on model theory an differential
algebra aimed to the of study transcendence questions about holomorphic functions satisfying algebraic
differential equations.

Basic computational problem. Given holomorphic functions fi,..., fr on some open domain U of the
complex plane, each satisfying an algebraic differential equation
(E): P(t,y, ¢, y™) =0
where P is a polynomial whose coefficients are rational or algebraic functions of ¢.
(Q1) How to compute a system of generators of the ideal

I(f1,..., fn) ={Q € C(t)[X1,..., Xn] | Q(t, f1(t), ..., fr(t)) = 0 for all (non singular) values ¢t € U}?

This ideal I(fy,..., fn) is the called the ideal of algebraic relations among fi,..., f,. Equally interesting
questions also arise by replacing the ideal I(fi,..., fn) by its differential analogue (equivalently, by consid-
ering the algebraic relations among the f; and their successive derivatives). A simpler problem is simply to
count the number of such algebraic relations:

(Q2) How to compute

independent alg. relations
{ P & =n—td(f1,..., fa/C(t)?

satisfied by f1,..., fn

Here, td(f1,..., fn/C(t)) means the transcendence degree of the field C(¢, f1(t),..., fn(t)) generated by
fis-.., fn and C(t) in the field of meromorphic functions on U.

Prerequisites. We will assume some basic knowledge on the following subjects:

e differential Galois theory for linear differential equations: our standard reference will be the first
chapter (p3-p36) of the book Differential Galois theory of Marius van der Put and Michael Singer.

e a basic course in model theory and w-stable structures: our standard reference will be the first two
chapters (p1-p43) of the book Model Theory and Algebraic Geometry edited by Elisabeth Bouscaren.

e some basic knowledge on algebraic geometry over the complex numbers: the first chapter of Robin
Hartshorne’s book Algebraic geometry will be our standard reference.

Picard-Vessiot linear differential Galois theory. In the case where the equations are linear, these type
of problems can be handled using differential Galois theory. This approach is based on a construction

PV : (linear differential equations) — differential ring over C(¢t) (or a differential field ext. of C(t))

which to a linear differential equation (L) associates the PV-ring (resp. the PV-extension) associated to (L).
Recall that if (L) is given in a matrix form as

(L):Y' =AY where A € Mat,,(C(t))
the PV-extension K/k associated to (L) is characterized by the following properties:

e (L) admits a fundamental system of solutions P € GL,(K) in K.
e K is generated (as a field extension over k) by the entries p; ; of the matrix P.
e K/k admits non new constants.

A fundamental lemma in the proof of the Galois correspondence is to show that these three properties
characterize a unique differential field extension of k£ up to isomorphism and one sets

Gal(L) = Auts(K/k).
which measures the failure of the PV-extension to be well-defined up to a unique automorphism. Furthermore,
this group can be identified with an algebraic group over the constants giving a Galois correspondence:

(closed algebraic subgroups of G) «~ ( differential subfields of K/k).
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Exercise (first-order linear differential equations). Consider a linear differential equation of order one
(L) 1y = £(t) -y where f(t) € C(1)"s
and set k = C(t, f(t)).

(a) Show that either Gal(L/k) ~ C* or Gal(L/k) ~ Z/nZ a,d that these two cases depends on whether
(L) admits a no nonzero algebraic solution or not.
(b) Show that if (L) admits a algebraic solution then (L) admits an algebraic solution of the form

N )
YO =1 a6 1)

where P, Q are polynomials.

To illustrate the effectiveness of PV-theory to study the two basic computational problems for linear
differential equations, we prove

Theorem A (Functional Lindemann-Weierstrass Theorem). Let fi(t),..., f.(t) € C(t)%9 be non constant
algebraic functions defined on some complex domain U.
fi(t), ..., fn(t) are Q-lin ind. modulo C = their exponentials 1) ... e are alg. ind. over C(t)

The proof will be in two steps. The first step will be to compute the Galois group of a linear differential
equation of the form

v =1y
when f’(t) € C(t) is the derivative of an algebraic function f(t). The second step is that a combination of
Step 1 and the Galois correspondence gives the conclusion of the theorem.
Claim (Step 1). Let h(z) € C(x)*9 be an algebraic function and
(L):y =W(x)y
the differential equation given by the derivative of h(z). Then Gal(L) = G,,,(C) iff h(x) ¢ C.

Proof. One direction is obvious. Assume Gal(L) # G,,(C) and and that h is not a constant algebraic function
for the sake a contradiction. The previous exercise implies that

(L) iy =W -y
admits a nonzero algebraic solution ¢ € C(z)?9. To obtain an analytic realization, note that h as an algebraic
function satisfies an (irreducible) algebraic equation of the form

Y Fan_1(x) -y 4 Fa(z) =0
and we can realize h as an analytic function h(x) € Hol(U) defined on a simply connected domain U avoiding
the poles of the a;(z). Furthermore, up to restricting U even more, we may assume that

e h(z): U — C is a biholomorphism onto its image.
e the algebraic solution ¢(z) : U — C on U is also an holomorphic function on U.

A direct computation shows that
b=goh iz o(h71(2))
is a solution of the differential equation 3’ = y. Indeed, the chain rule gives:

Ay dy ) _ prn1(2)) - s(h2(2)

-1 1
dz_dx(h (2))- dz

W)

To conclude, we will use the classical fact from analytic geometry/o-minimal geometry.

= 1.

Fact (Analytic geometry). The class of algebraic functions is stable under composition and compositional
inverse (whenever this operation make sense).

It follows from this fact that ¢ is an algebraic solution of ' = y and hence must be equal to zero and
hence so is ¢ which is our contradiction. O
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Proof of the theorem. Let fi(z),..., fn(z) € C(x)™9 be non constant, set g;(z) = /¢(*) and assume that (x)
td(g1(), ..., gn(2)/C(z)) <n

Note that the g;(z) are nonzero solutions of
(Li):y = fl(x)-yfori=1,...,n

and generate the PV-extensions associated to the (L;) which by the previous claim all have Galois group
C*. Now consider the composite

L=Li- Ly, =CH)"(g1(t), ..., gn(t))/Ct)™

the composite of all the PV-extensions associated to the (L;). Since the composite of PV-extensions is a
PV-extension, we can consider

G = Gal(L/C(t)™9).
On the one hand, the action of G on L preserves each the L; and define an algebraic group embedding;:
i:Gal(L/k) — Gal(L1/k) x ... x Gal(L,/k) = G}.,(C)
which is given by the formula
0= (U(fl) : fl_la v 7U(fn) : f;l)
and on the other hand
dim(Gal(L/k)) = td(L/k) <n
by assumption. It follows that the image of ¢ the is a proper algebraic subgroup of G (C). The structure of

the subgroups of the multiplicative torus then implies that any automorphism o of G satisfies an equation
of the form

Hyfq =1 where y; = o(f;) - f;
Setting g = [[g¢;* € L and reordering the factors, we obtain that o(g) = g for all ¢ € G and therefore

by applying the Galois correspondence that g € C(¢)%9. Note that g is an algebraic solution of the linear
differential equation

y/:(el'f1+~~~en’fn)/'y
and hence by the applying Step 1 again, we conclude taht ey - f1 + ...+ e, - f,, is a constant as required. O

Objectives of this course. The objective of this course is to present analogous techniques using model
theoretic techniques to adapt the previous constructions to the case of algebraic differential equations.

(linear differential equations) ~~ (algebraic differential equations)
Objective 1. Construct an algebraic analogue of the construction which to a linear differential equation
associates its PV-ring and its PV-extension
Sol : (alg. differential equation) — Def(DCFy)

which to an algebraic differential equation associates a definable set in the theory DCF of differentially closed
field of characteristic zero. The first objective of this course is a presentation of the category Def(DCFy) of
definable sets of this theory. A fundamental result is:

Theorem B (Blum-Poizat). The theory T = DCF( admits the elimination of quantifiers and imaginaries
in the language of differential rings.

The first part of the theorem — the elimination of quantifiers — ensures that every k-definable set of one
variable can be presented as boolean combination of equations given by differential polynomials.

Pek{X}=k[X,X',...,X™ ]
and commutative algebra of the ring of differential polynomials will be our first occupation in this course.
The second part says — the eliminations of imaginaries — says that one can take quotient in the category

Def(DCFy): if D is a definable set and R is a definable equivalence relation on D, then R/D can be identified
with an object of Def(DCF).

Objective 2. In this framework, write a proof of the Ax-Schanuel Theorem for the exponential function.
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Theorem C (Ax-Schanuel). Let fi(t),..., fu(t) be nonconstant holomorphic functions. Then

td(fr(8), o, fu(t), €D, e C(t) 2
provided f1(t), ..., fo(t) are Q-linearly independent modulo C.

This theorem of Ax is one of the most striking applications of the methods of differential algebra. It
a functional analogue of a conjecture of number theory (Schanuel’s conjecture) which predicts a similar
behavior for the algebraic relations between complex numbers and their exponentials. In the special case
where all the f; are algebraic functions, we recover

td(f1(¢), .. .,fn(t),efl(t), .. .,ef"(t)/(C(t)) = td(efl(t)7 .. .,ef"'(t)/C(t)) >n

which is Lindermann-Weierstrass Theorem. Finally, note that Ax Theorem admits a purely differential alge-
braic formulation replacing the analytic functions f1(¢),..., fn(t) € Hol(U) by (abstract) elements f1,..., f,
of a differential field extension (K, 9)/C(t) without new constants.
no new constants. a differential field extension K/k has no new constants if K and k have the same
(algebraically closed) field of constants.

Although, we can not directly make sense of precomposition by the exponential function in the differential
setting, we have a close enough analogue. An element e of K is called an exponential of an element f of K
(f is then called a logarithm of e) if they satisfy the differential relation

d(e)/e =0(f)
which is obviously satisfies by f(t) and e(t) = e/(*) in the differential function field of Hol(U). Translating
the previous theorem in this (weaker) setting, we obtain the following statement.

Theorem D (Ax Theorem, differential version). Let K/k(t) be a differential field extension without new
constants, f1,...,fn € K and ey, ..., e, € K exponentials of f1,..., fn. Then

td(fl?' . 'af'rugl?' .. agn/k(t)) Z n
provided f1,..., fn are Q-linearly independent modulo C.
Objective 3. Model theory of differential algebraic groups and of strongly minimal algebraic differential
equations.

More information about this objective will be added later on when we have advanced on the first two
objectives.
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