
LECTURE 3. DIFFERENTIALLY CLOSED FIELDS

We now apply the previous results to describe the model-theoretic properties of the theory DCF0 of dif-
ferentially closed fields of characteristic zero. This theory will be written in the language of differentials
rings

L∂ = {0, 1,+,×,−, ∂} = Lrings ∪ {∂}
which is the language of rings expanded with a unary function symbol ∂. A L∂-structure (K, ∂) is a model
of DCF0 if it satisfies the following (schemes of) axioms:

(A1) K |= ACF0 is an algebraically closed field of characteristic zero,
(A2) ∂ is additive and satisfies the Leibniz rule:

∂(x+ y) = ∂(x) + ∂(y) and ∂(xy) = x∂(y) + y∂(x)

for all x, y ∈ K.
(A3) for every nonconstant differential polynomial f, g ∈ K{X} with ord(g) < ord(f), there exists x ∈ K

such that
f(x) = 0 ∧ g(x) ̸= 0.

Lemma 3.1. The theory DCF0 is consistent. Furthermore, any differential field k is contained in a model
of DCF0.

Proof. Let k be a differential field and let f, g ∈ k{X} with ord(g) < ord(f). Denote by f1 an irreducible
factor of f so that ord(f1) = ord(f) and consider I(f1) the prime differential ideal given by Theorem ??.
By construction of this ideal, g /∈ I(f1) as g has lower order than f1. It follows that the differential field

l = Frac(k{X}/I(f1))

extends k and contains an element a — the image of X — such that f(a) = 0 ∧ g(a) ̸= 0.
• Iterating the process we produce a differential field extension k1 | k such that every system of

equation and differential equations as above with coefficients in k has a solution in k1.
• Iterating this new process, we obtain a chain of differential field extension

k ⊂ k1 ⊂ k2 ⊂ . . . ⊂ kn ⊂ . . .

such that every system of equation and differential equations as above with coefficients in ki has a
solution in ki+1.

Clearly, the limit k = ∪i∈Nki is a differentially closed field containing k. □

3.1. Elimination of quantifiers.

Theorem 3.2 (Elimination of quantifiers). The theory DCF0 admits the elimination of quantifiers in the
language L∂ of differential rings.

Recall the following criterion for quantifier-elimination: Let T be a theory in a language L. The theory
T has QE in the language L if and only if
(∗) whenever M,N |= T extend a common finitely generated substructure A, a ∈ An, m ∈M and ϕ(x, y) a

quantifier-free L-formula (without parameters) such that

M |= ϕ(m, a)⇒ N |= ∃xϕ(x, a)

Furthermore, up to replacing N by an elementary overstructure, we may assume that N is ω-saturated1 in
order to check (∗).

1This means that every countable set of S = {ϕi(x, l) | i ∈ N} which is finitely satisfiable in N is satisfiable in N .
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Proof. Consider K,L |= DCF0 containing a common finitely generated L∂-substructure A and assume that
L is ω-saturated. By definition of the language, A is a finitely generated substructure means that A is a
finitely generated differential subring of K and L respectively and in particular is an integral domain. Denote
by k the algebraic closure of the fraction field of A. Since the derivation on A extends uniquely to k and K,L
are algebraically closed differential fields (by axioms (A1) and (A2)), the inclusions iK : A → K (resp. iL :
A→ L) extends uniquely to inclusions

iK : k → K (resp. iL : k → L)

Consider m ∈ K, s ∈ k and ϕ(x, y) quantifier-free such that K |= ϕ(m, s). To show that L |= ∃ϕ(x, s), a
direct inspection of quantifier-free formulas2 shows that it is enough to find n ∈ L such that

k⟨m⟩ ≃ k⟨n⟩

as differential fields over k sending m to n. If m ∈ k then there is nothing to do. Otherwise, we distinguish
according to the position of m with respect to k.

• Case 1. m ∈ K satisfies a nontrivial differential equation over k that is

I(m/k) = {f ∈ k{X} | f(m) = 0}

is a nonzero ideal of k{X}.
By the first theorem of Ritt (Lecture 2), I(m/k) = I(f) where f is a minimal nonzero polynomial in I(m/k)
with respect to ≪ and in particular is irreducible. The axiom (A3) of DCF0 implies that the countable set
of formulas

{f(x) = 0 ∧ g(x) ̸= 0 | g(x) ∈ k{x} with ord(g) < ord(f)}
is finitely satisfiable in L and hence by ω-saturation satisfiable in L. By hypothesis, I(n/k) is a prime ideal
containing f and no differential polynomial of lower order. Since f is irreducible, we have

I(n/k) = I(f) = I(m/k)⇒ k⟨m⟩ ≃ k⟨n⟩

as required.
• Case 2. m ∈ K satisfies no nontrivial differential equation over k.

In that case, by ω-saturation of L, the countable set of formulas

{f(x) ̸= 0 | f(x) ∈ k{X}}

is finitely satisfiable and hence satisfiable in L say by n ∈ L. By construction, we have

k⟨m⟩ ≃ k⟨X⟩ ≃ k⟨n⟩.

as required. This completes the proof of the theorem. □

Corollary 3.3. The theory DCF0 is complete.

Proof. Every differentially closed field contains Q equipped with the trivial derivation as a substucture. A
theory with QE whose models share a common substructure is complete (exercise). □

3.2. Geometric consequences. Fix for the rest of the section K |= DCF0.

Definition 3.4. A Kolchin-closed subset Σ of Kn is a set of the form

Σ = {x ∈ Kn | f1(x) = . . . = fn(x) = 0}

where f1, . . . , fn ∈ K{X1, . . . , Xn} are differential polynomial of n variables. A Kolchin-closed set is called
irreducible if it can not be written as the union

Σ = Σ1 ∪ Σ2 with Σ1 ̸⊂ Σ2 and Σ2 ̸⊂ Σ1.

2The quantifier-free formulas with parameters from k are the boolean combination of formulas of the form P (x, s) = 0 where
P ∈ k{x} is a differential polynomial
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Corollary 3.5 (Differential Nullstenlensatz). We have an inclusion reversing one-to-one correspondence

{ Kolchin-closed subset ofKn} ⇆ { radical differential ideals of K{X}}}
Σ → I(Σ) = {f ∈ K{X} | f(x) = 0 for all x ∈ Σ}

V (I) = {x ∈ Kn | f(x) = 0 for all f ∈ I} ← I

Furthermore, the Kolchin-topology of Kn is a noetherian topology and irreducible Kolchin-closed subsets
correspond to prime ideals.

Proof. Clearly, I(Σ) is an ideal. It is radical and differential since for every x ∈ Kn,

fn(x) = 0⇒ f(x) = 0 and f(x) = 0⇒ ∂(f)(x) = 0

as the evaluation is a morphism of differential rings. Conversely, V (I) is a Kolchin-closed set since by the
second theorem of Ritt (Lecture 2), I = {f1, . . . , fn} is finitely generated. Furthermore, we have

V (I(Σ)) = Σ and I(V (Σ)) = I.

Indeed, the first equality follows from the second one as by definition any Kolchin-closed set Σ can be written
V ({f1, . . . , fp}) so that assuming the second equality, we get

V (I(Σ)) = V (I(V ({f1, . . . fp}))) = V ({f1, . . . , fp}) = Σ.

It is therefore enough to prove the second equality. To that end, note that I ⊂ I(V (Σ)) and consider
f ∈ K{X} \ I. Write

I =

n⋂
j=1

Ij

where the Ij are prime differential ideals so that f /∈ Ij for some j. It follows that

L = Frac(K{X}/Ij) ⊂ U |= DCF0

is a differential field. By construction, The image of x of X in U satisfies

x ∈ Σ ∧ f(x) ̸= 0

so that U |= ∃x(x ∈ Σ) ∧ f(x) ̸= 0 which is a sentence with parameters from K. It follows from Theorem
3.2 that modulo DCF0, this formula is equivalent to a quantifier-free formula which is satisfied in U iff it is
satisfied in K. It follows that

K |= ∃x(x ∈ Σ) ∧ f(x) ̸= 0

and hence that f /∈ I(V (Σ)) as required. The second part of the statement is left as an exercise using the
second theorem of Ritt. □

Corollary 3.6 (Description of types). Let k ⊂ K be a differential subfield. The function

I :

{
Sn(k) → Spec∂K{X1, . . . Xn}
p → I = {f ∈ k{X1, . . . , Xn | “f(x) = 0′′ ∈ p}

is a bijection where Sn(k) denotes the model-theoretic space of types and Spec∂K{X1, . . . Xn} is the set of
differential prime ideals of k{X1, . . . , Xn}.

Proof. We first need to show that I is well defined and that I is a prime ideal. Take a |= p. By enlarging K
if necessary, we can find a realization a = a1, . . . , an of p in a model of DCF. By construction of a, we have
that

I = I(a) = {f ∈ k{X1, . . . , Xn} | f(a) = 0}
and the fact that I is a prime ideal follows easily from this presentation. It remains to show that I is injective
and surjective. The second part is automatic. The first part follows directly from quantifier elimination:
since every formula is equivalent to boolean combination of formulas of the form f(x) = 0, a type p ∈ Sn(k)
is determined by the function

f(x) 7→ χp :

{
0 if “f(x) = 0′′ ∈ p
1 otherwise

which is the characteristic function of the subset I in k{X1, . . . , Xn}. Surjectivity follows from the differential
Nullstellensatz as any partial type π(x) (a consistent set of formulas) can be extended to a complete type. □
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Theorem 3.7. The theory DCF0 is ω-stable (in the sense of model theory).

Proof. A theory T in a countable language if for any infinite set of parameters A, we have that | S1(A) |≤| A | .
Denote by k the differential field generated by A. Since A is infinite, we have | k |=| A | and the restriction
morphism

S1(k)→ S1(A)

is a bijection. Using the previous corollary together with the first theorem of Ritt (Lecture 2), we obtain
that | S1(A) |=| S1(k) |≤| k |=| A | as required. □

3.3. Elimination of imaginaries. Recall that a complete theory T in a language of L admits the elimi-
nation of imaginaries if for every definable equivalence relation E on some definable set D ⊂ Mn of some
model M |= T , there exists a definable function f : D →Ms such that

xEy ⇔ f(x) = f(y).

One can then identify D/E with the definable set f(D) and therefore under this condition take quotient
without leaving the category of definable sets. To prove the elimination of imaginaries, we will use a rather
indirect path. Fix once for all K |= DCF0 an ω saturated and ω-homogeneous model.

Definition 3.8. Let ϕ(x, a) be a formula (in the language of differential rings). A differential field of
definition for ϕ(x, a) is a differential subfield k ⊂ K such that there exists a formula ψ(x, b) with parameters
b = b1, . . . , bn from k such that

ψ(x, b)↔ ϕ(x, a).

Similarly, if I is a differential ideal of K{X1, . . . , Xn}, a differential field of definition for I is a differential
subfield of K which contains a system of generators for I.

Lemma 3.9. Let ϕ(x, a) be a formula and let k be a differential subfield of K. k is a field of definition of
ϕ(x, a) if and only if for every σ ∈ Aut∂(K),

σ fixes k pointwise ⇒ σ(D) = D setwise

where D = ϕ(K, a) is the definable set defined by ϕ(x, a).

Proof. The direct implication is obvious. To prove the converse, consider a differential subfield k such that
for every σ ∈ Aut∂(K), if σ fixes k pointwise then σ(D) = D setwise. Fix b ∈ D. By homogeneity of K, the
assumption implies that any other realization of p = tp(b/k) also lies in D. So that

DCF0 ⊢ p(x)→ ϕ(x, a)

By compactness, we can find a formula ψb(x) ∈ p(x) with parameters from k, such that DCF0 ⊢ ψb(x) →
ϕ(x, a) and K |= ψb(b). Since this is true for any b ∈ D, we conclude that

DCF0 ⊢ ϕ(x, a)↔
∨
b∈D

ψb(x)

Using compactness again, we obtain that DCF0 ⊢ ϕ(x, a) ↔
∨n

i=1 ψbi(x) which shows that k is a field of
definition of ϕ(x, a). □

Proposition 3.10. The following properties are equivalent:
(i) T = DCF0 admits the elimination of imaginaries,
(ii) every formula admits a smallest (finitely generated) differential field of definition,
(iii) every radical differential ideal of K{X1, . . . , Xn} admits a smallest (finitely generated) differential

field of definition.

Proof. (i) ⇒ (ii). Let ϕ(x, a) be a formula with a = a1, . . . , an. Consider the definable equivalence relation
E(y, z) on Kn defined by

E(y, z) iff K |= ∀x(ϕ(x, y)↔ ϕ(x, z))

and denote by fE : Kn → Km the function witnessing elimination of imaginaries. We first claim that the
differential field k generated by α = fE(a) is the smallest differential field k of definition of ϕ(x, a). Indeed,
by construction

σ fixes k pointwise iff σ(α) = α iff K |= ϕ(x, a)↔ ϕ(x, σ(a)) iff σ(D) = D
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and we conclude by the previous lemma that k is the smallest differential field of definition of ϕ(x, a).
(ii) ⇒ (i) By Ritt-Raudenbush Theorem, every radical differential ideal I can be written as

I = {f1, . . . , fs}
where f1, . . . , fs is a finite set of differential polynomials. Consider the formula

ϕ(x, a) := “f1(x) = 0 ∧ . . . ∧ fs(x) = 0′′

where a ∈ k is the tuple consisting of all the coefficients of the fi. Clearly, by the differential Nullstenlensatz,
a differential field of definition for ϕ(x, a) is a differential field of definition of I.

(iii) ⇒ (i) Let E(y, z) be a definable equivalence relation on some definable set D defined over k. For
a ∈ D, denote by

[a]E = {x ∈ D | xEa}
and by [a]E its Kolchin-closure. We first claim that

Claim. [a]E = [b]E iff aEb.

Proof of the claim. Indeed, clearly aEb ⇒ [a]E = [b]E ⇒ [a]E = [b]E . Conversely, if [a]E = [b]E then [a]E
contains a dense open Kolchin-subset Ua of [a]E and so does [b]E . Since any two dense Kolchin subset
intersect, we have Ua ∩ Ub ̸= ∅ which implies (by transitivity) that aEb as required. □

Now fix a ∈ D, p = tp(a/k) and fix:
(i) α for a generator of the differential field of definition of I([a]E),
(ii) P1(x, α), . . . , Ps(x, α) for generators of I([a]E) with coefficients in Q⟨α⟩

Note that since [a]E is k⟨a⟩-definable so is [a]E and therefore α ∈ k⟨a⟩ and there exits a k-definable function
fa : D → Km such that fa(a) = α. By construction, if β = fa(b) then β satisfies the analogue of (i) and (ii)
for [b]E .

Claim. If b1, b2 |= p then b1Eb2 iff fa(b1) = fa(b2).

Proof of the claim. Set βi = fa(bi). Clearly, if β1 = β2 then

I([b1]E) = {P1(x, β1), . . . , Ps(x, β1)} = {P1(x, β2), . . . , Ps(x, β2)} = I([b2]E)

so that b1Eb2 by the previous claim. Conversely, assume that b1Eb2 so that I([b1]E) = I([b2]E) by the
previous claim. Consider σ ∈ Autδ(K/k) such that σ(b1) = b2 then by definition

σ([b1]E) = [b2]E = [b1]E

and it follows using that β1 is fixed by every automorphism fixing [b1]E that

β1 = σ(β1) = σ(fa(b1)) = fa(σ(b1)) = fa(b2) = β2

as required. □

Since this is true for any point a ∈ D, we can find by compactness a decomposition

D = D1 ∪ . . . ∪Dr and k-definable functions fi : Di → Kni

such that for every b, c ∈ Di, bEc iff fi(b) = fi(c). We conclude the proof by building by induction on i ≤ r
a k-definable function gi : D1 ∪ . . . ∪Di → Kmi with the same property: assume that gi has been already
build for i < r and consider Si+1 the k-definable subset of Di+1 given by

Si+1 = {x ∈ Di+1 | ∃z ∈ D1 ∪ . . . ∪Di such that zEx}
and consider G ⊂ Si+1 ×Kmi defined by

G := {(x, y) ∈ Si+1 ×Kmi | ∃z ∈ D1 ∪ . . . ∪Di | zEx and gi(z) = y}
By the induction hypothesis, G is the graph of a k-definable function g. The function

gi+1(x) =


gi(x) if x ∈ D1 ∪ . . . ∪Di

g(x) if x ∈ Si+1

fk+1(x) otherwise.

is an extension of gi satisfying the required properties. This concludes the proof of the proposition. □
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Theorem 3.11 (Field of definition of an ideal). Every ideal I of K[X1, . . . , Xn] admits a smallest field of
definition.

Proof. Denote by M a basis of monomials of K[X]/I as a K-vector space. Each monomial u of K[X] can
be uniquely written as

u =
∑
m∈M

au,mm+ fu

where fu ∈ I, au,m ∈ K.

Claim. The field
k = Q[au,m | u monomial of K[X],m ∈M ]

is the smallest field of definition of I.

• Step 1. We show that k is a field of definition of I.
For f ∈ I, we can write

f =
∑

u mon. of K[X]

buu =
∑

u mon.K[X]

bu ·
(
u−

∑
m∈M

au,mm
)
+

∑
m∈M

( ∑
u mon. of K[X]

buau,m

)
·m

Since by definition the left term lies in I and M is a K-basis of K[X]/I, we conclude that all the coefficients
of the right term must be zero and hence that

f =
∑

u mon.K[X]

bu ·
(
u−

∑
m∈M

au,mm
)
.

It follows that I is generated by the u −
∑

m∈M au,mm ∈ k[X] where u ranges over all monomials of K[X]
so that k is indeed a field of definition for I.

• Step 2. Consider l another field of definition of I. We show that k ⊂ l.
Note that every automorphism of K extends to an automorphism of K[X1, . . . , Xn] by setting:

σ(
∑

m∈mon.k[X]

fm ·m) =
∑

m∈mon.k[X]

σ(fm) ·m

Since l is a field of definition of I, for every σ ∈ Aut(K/l), we have σ(I) = I. It follows that for every
monomial u, we have

u = σ(u) =
∑
m∈M

σ(au,m) ·m+ σ(fu)

By uniqueness of the decomposition, it follows that σ(au,m) = au,m for every σ ∈ Aut(K/l) and every u,m.
We have therefore shown that k is a subset of l. □

Theorem 3.12 (Elimination of imaginaries). The theory DCF0 eliminates imaginaries in the language L∂

of differential rings.

Proof. It is enough to show that every radical differential ideal I admits a smallest differential field of
definition using Proposition 3.10. By the Ritt-Raudenbush Theorem, we can find a finite set of differential
polynomial such that

I = {f1, . . . , fn}
Consider N large enough so that f1, . . . , fn ∈ K[X,X ′, . . . , X(N)] and set J for the ideal they generate. By
Theorem 3.11, J has a smallest field of definition k ⊂ K. It is now easy to see that the differential field k̃
generated by k is the smallest differential field of definition of I. □

Example 3.13. Let K |= DCF0 and denote by C the field of constants of K.
• The imaginary K∗/C∗ is eliminated by the function

∂log : y 7→ ∂(y)/y

• Consider the action of the affine group Aff2(C) on the affine line K. The imaginary K/Aff2(C) is
eliminated by the affine distorsion:

y 7→ ∂2(y)/∂(y)
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• Consider the action of PSL2(C) on the projective line P1(K). The imaginary P1(K)/PSL2(C) is
eliminated by the Schwarzian derivative

y 7→ (y′′/y′)′ − 1/2(y′′/y′)2

3.4. References. The concept of differentially closed field was introduced by Abraham Robinson [Rob59] as
a differential analogue of the concept of algebraically closed field. The presentation of the theory DCF0 based
on the schemes of axioms (A1) to (A3) and the fact that differentially closed fields enjoy the elimination of
quantifiers in the language of differential rings is due to Lenore Blum in her PhD thesis [Blu69]. Finally,
the fact that differentially closed fields also enjoy the elimination of imaginaries in this language is due to
Poizat [Poi83]. This lecture follows the presentation of these results in the lectures notes of Dave Marker in
[MMP96] and the effective procedure for eliminating imaginaries in the theory of [Sca18].
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