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Outline
The purpose of my talk is to present the relationships between two classical theorems from
differential algebra.

Theorem (Liouville, 1835). Let f (z) be an algebraic function. If the primitive
∫
f (z)dz

is an elementary function then it can be written as :

∫
f (z)dz = R0(z, f (z))︸ ︷︷ ︸

rational function

+

weighted sum of logs︷ ︸︸ ︷
n∑

i=1

ci · ln(Ri (z, f (z)))

where c1, . . . , cn are complex numbers and R0, . . . ,Rn ∈ C(X ,Y ).

Theorem (Ax, 1971). Let f1(z), . . . , fn(z) be holomorphic functions. Then

#


ind alg. relations which hold
of f1(z), . . . , fn(z)
and ef1(z), . . . , efn(z)

≤ n +#


ind Q-linear relations
among f1(z), . . . , fn(z)

mod C
.

In the background. This is part of a wider project which aims to obtain a
model-theoretic understanding (in the sense of mathematical logic) of the relationships
between exponential algebra and differential algebra.

Joint work with Jonathan Kirby (University of East Anglia).
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Liouville (1830-1840)

Motivation. In certain special cases, we can compute “explicitly” a primitive∫
ln(z)dz = z · ln(z) − z or

∫
dz

√
1 − z2

= arccos(z)

but in general we can’t. For example,∫
e−z2dz = ?? or

∫
dz

√
z3 + az + b

= ??

To formalize this idea, we follow the approach of Liouville based on the notion of
elementary function.{

solvability by elementary
functions for primitives

⇆

{
solvability by radicals
for algebraic equations.

Liouville’s methods are not (differential) Galois-theoretic. Even assuming some
knowledge of Picard-Vessiot differential Galois theory,

y ′ =
1

√
1 − z2

and y ′ =
1

√
z3 + az + b

both have Galois group Ga.

while the first one defines an elementary function (f (z) = arcos(z)) and not the
second one (f (z) is an elliptic integral).
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Mémoire sur la classification des transcendantes (Liouville, JMPA, 1837)
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The class of elementary functions

Let f : U ⊂ C → C be an holomorphic function (of one complex variable).

Definition
The function f (z) is an elementary function (in the sense of Liouville) if — after possibly
restricting its domain of definition — it can be constructed from the variable z using
finitely many times the following operations :

(a) arithmetic operations (+,×,−, /) and multiplication with complex numbers,

(b) precomposition with the exponential function exp and (branches of) the logarithm ln,

(c) extraction of roots of algebraic equations.

Examples.
▶ R(z) = P(z)/Q(z),R(z,

√
z) and more generally any algebraic function,

▶ all trigonometric functions and their inverses : cos(z), arccos(z)...
▶ arbitrary complicated compositions of such functions such as

f (z) =
ecos(z)

√
1 + z2

(1 + ln(1 + z))...

The problem of integration in finite terms. Find an algorithm which given an
elementary function
(1) decide whether its primitive is elementary,
(2) if it is, compute an explicit construction of it using (a),(b),(c).
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Liouville’s Theorem

Theorem (Liouville, relative version). Let f (z) be an elementary function. If
∫
f (z)dz

is also elementary then it is of the form

∫
f (z)dz = R0(z, f (z), f

′(z), . . . , f (n)(z))︸ ︷︷ ︸
rational function

+

weighted sum of logs︷ ︸︸ ︷
m∑
i=1

ci · ln(Ri (z, f (z), . . . , f
(n)(z))

where c1, . . . , cm ∈ C and R0, . . . ,Rm ∈ C(X0, . . . ,Xn).

In particular for f (z) = e−z2 , f ′(z) = −2zf (z) and Liouville reaches :∫
e−z2dz = R0(z, e

−z2 ) +
m∑
i=1

ci · ln(Ri (z, e
−z2 ))

and shows that it does not admit any solution.

For algebraic functions f (z)...

Theorem (Risch,1969 - Davenport, 1981). The problem of integration in finite terms for
algebraic functions is decidable.

Additionally, Risch shows the decidability of various properties of elementary functions
such as checking the equality between two elementary functions.

In general, Risch’s algorithms are not efficient.
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Possible improvements on Liouville’s theorem

(1) Replace functions of one variable by functions of several variables (Rosenlicht, 1960).

(2) Adding a Galois-theoretic component. instead of taking the primitive, consider
elementary solutions of arbitrary linear differential equations.

Theorem (Davenport-Singer, 1986). Consider an inhomogeneous linear differential equation

(L) : y (s) + as−1(z) · y (s−1) + . . .+ a−1(z) · y = b(z)

where ai (z), b(z) ∈ C(z)alg . If (L) has an elementary solution, then (L) has a solution of
the form

f (z) = P(z, ln(R1(z)), . . . , ln(Rm(z)))

where P(z,−) ∈ C(z)alg [X1, . . . ,Xm] is a polynomial of degree ≤ s, Ri (z) ∈ C(z)alg .

(3) Enlarging Liouville’s class of elementary functions. instead of Liouville’s class of
elementary functions, consider integrability properties with respect to larger classes of
functions.

Theorem (Pila-Tsimerman, 2022). The problem of integration of an algebraic function by
elementary functions and elliptic integrals is decidable.

In this talk, we consider the enlargement obtained by closing Liouville’s class of
elementary functions under the implicit function theorem.
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The Ax-Schanuel Theorem

Schanuel’s conjecture (1960s). Let α1, . . . , αn ∈ C be complex numbers.

adim(α1, . . . , αn, e
α1 , . . . , eαn/Q) ≥ ldimQ(α1, . . . , αn).

▶ Famous examples : e and π are transcendental numbers.
▶ Famous open problem : e and π are algebraically independent.

The Ax-Schanuel Theorem is a functional analogue of Schanuel’s conjecture.

Theorem (Ax, 1971). Let f1(z), . . . , fn(z) be holomorphic functions. Then

adim(f1(z), . . . , fn(z), , e
f1(z), . . . , efn(z)/C(z)) ≥ ldimQ(f1(z), . . . , fn(z) mod C)

or equivalently :

#


ind alg. relations which hold
of f1(z), . . . , fn(z)
and ef1(z), . . . , efn(z)

≤ n +#


ind Q-linear relations
among f1(z), . . . , fn(z)

mod C
.

Slogan. The Ax-Schanuel Theorem describes a “universal” inequality for (tuples of)
holomorphic functions. Liouville’s theorem describes the behavior of integration for
functions lying on the equality case of this universal inequality.
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The class of exponentially algebraic functions

Definition (Zilber, Kirby, around 2000-2010)
An holomorphic function f (z) is exponentially algebraic if — after possibly restricting its
domain of definition — it satisfies an algebraic equation of the form

yn + an−1(z) · yn−1 + . . . , a1(z) · y + a0(z) = 0

where the coefficients

ai (z) = Hi (z, f1(z), . . . , fn(z), e
f1(z), . . . , efn(z))

depends rationally on a tuple of nonconstant holomorphic functions f1(z), . . . , fn(z) and
their exponentials satisfying the equality case in Ax Theorem.

Example. the function f (z) = ecos(z)√
1+z2

(1 + ln(1 + z)) is exponentially algebraic Indeed, set

{
f1(t) = iz

ef1(z) = e iz
,

{
f2(z) = e iz

ef2(z) = ee
iz ,

{
f3(t) = e−iz

ef2(t) = ee
−iz ,

{
f4(z) = ln(1 + z)

ef4(t) = 1 + z

so that f (z) ∈ C(z, ee iz , ee−iz
, ln(1 + z))alg while

td(f1(z), . . . , f4(z), ef1(z), . . . , ef4(z)/C(z)) ≤ 8 − 4 = ldimQ(f1(z), . . . , f4(z) mod C)
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More examples
Obvious examples.

Any algebraic function is exponentially algebraic and every exponentially algebraic
function is differentially algebraic.

Every elementary function is exponentially algebraic.

Compositional inverses of elementary functions.
Consider the elementary function f (z) = z · ez .

The Lambert function L(w) — Lambert (1780) — is a local analytic inverse of f (z) = w .
Clearly, the relation L(w) · eL(w) = w implies that

adim(L(w), eL(w)/C(w)) ≤ 1 = ldimQ(L(w) mod C)

so that L(w) is exponentially algebraic. But it is well-known that L(w) is not an elementary
function of w (Liouville, 1837).

Similarly for the Kepler function K(w) which is a compositional inverse of

g(z) = z − e · sin(z).

Solutions of elementary functional equations. More generally, if F (w , z) is an elementary
function of two variables then any solution w 7→ z(w) of the functional equation

F (w , z) = 0 and
∂F

∂z
̸= 0

is exponentially algebraic and in general a non-elementary function of w .
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The structure theorem for exponentially algebraic functions

Let f (z) be an holomorphic function (of one complex variable).

Theorem (Wilkie 2008, Kirby 2010)
After possibly restricting the domain of definition of the function f (z), the following
conditions become equivalent :

(i) (Ax-Schanuel) the function f (z) is exponentially algebraic,
(ii) (implicit definition) the function f (z) can be constructed in finitely many steps from

Liouville’s class of elementary functions (with several variables) using the following
operations
(α) composition (with a possibly non fixed number of variables),
(β) partial holomorphic derivatives,
(γ) extraction of implicit functions under the analytic implicit function theorem.

In short, we say the function f (z) is an implicitly elementary function.

(iii) (o-minimal characterization) the function f (z) is definable in the o-minimal structure

(R, exp|[−1,1], sin|[−1,1]).

obtained by expanding semi-algebraic geometry by the restricted exponential and the
restricted sine functions only.
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A model-theoretic version of Liouville’s Theorem

Let f : U ⊂ C → C be an holomorphic function.

Theorem (J., Kirby)
Assume that both :

(a) the function f (z) is exponentially algebraic (equiv. implicitly elementary),

(b) the function f (z) belongs to some Picard-Vessiot extension of C(z)alg .

Then :

(Galois-theoretic information). The Galois group of the smallest Picard-Vessiot
extension of C(z)alg containing f (z) is isomorphic to Gk

a × Gl
m.
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The Galois-theoretic information allows effective computations.
Corollary (Liouville). The three functions

erf(z) =
∫

e−z2dz, sn(z) =
∫

dz
√
z3 + az + b

and Ai(z) =
∫ ∞

0
cos(u3/3 + uz)du

are not implicitly elementary functions.

Proof
The three functions satisfy respectively the linear differential equations

y ′′ − 2z · y ′ = 0︸ ︷︷ ︸
Aff2(C)

, y ′ =
1

√
z3 + az + b︸ ︷︷ ︸
Ga(C)

and y ′′ − z · y = 0︸ ︷︷ ︸
SL2(C)

.

In each case, the Galois group acts transitively on the nonzero solutions of the
equation. This gives the minimality requirement for the PV-extensions associated to
each equation.

For erf(z) and Ai(z), the Galois-theoretic information is conclusive. The compositional
inverse of sn(z) satisfies the elliptic equation

(y ′)2 = y3 + ay + b︸ ︷︷ ︸
an elliptic curve E(C)

A conclusive test for sn(z) is given by a slight improvement of the previous theorem.
(b) the function f (z) belongs to some strongly normal extension (in the sense of Kolchin) of

C(z)alg .
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The Galois-theoretic information allows effective computations.

Corollary (Liouville). The three functions

erf(z) =
∫

e−z2dz, sn(z) =
∫

dz
√
z3 + az + b

and Ai(z) =
∫ ∞

0
cos(u3/3 + uz)du

are not implicitly elementary functions.

With the same proof but using a relative version of the previous theorem

C(z)alg 99K any self-sufficient algebraically closed field differential field k

we obtain that the three previous examples are independent in the following sense.

Corollary. For any choice of (implicitly) elementary functions ψ, ϕ, χ, the three
functions

ψ ◦ erf(z), ϕ ◦ sn(z) and χ ◦ Ai(z)

— when the domains of definition are matching — are algebraically independent.

Main improvement over past results(Magid, 1990s). the “good” Galois-properties of
elementary functions are preserved after application of the implicit function theorem.

A natural question. Does the classical characterization of solvability by Liouvillian
functions goes through for solvability by implicitly Liouvillian functions ?
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A model-theoretic version of Liouville’s Theorem

Let f : U ⊂ C → C be an holomorphic function.

Theorem (J., Kirby)
Assume that both :

(a) the function f (z) is exponentially algebraic (equiv. implicitly elementary),

(b) the function f (z) belongs to some Picard-Vessiot extension of C(z)alg .

Then :

(Galois-theoretic information). The Galois group of the smallest Picard-Vessiot
extension of C(z)alg containing f (z) is isomorphic to Gk

a × Gl
m.

(explicit definition). The function f (z) is in fact an elementary function : a
construction of f (z) does not involve the implicit function theorem.

Furthermore, an improved formulation includes a relative version of the theorem and the
case of strongly normal extensions in the sense of Kolchin.
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Transferring results from elementary functions...

(1) Corollary (Abel’s version of Liouville’s Theorem). Let f (z) be an algebraic function. If
the primitive

∫
f (z)dz is an implicitly elementary function then it can be written as :∫

f (z)dz = R0(z, f (z)) +
n∑

i=1

ci · ln(Ri (z, f (z)))

where c1, . . . , cn are complex numbers and R0, . . . ,Rn ∈ C(X ,Y ).

In a recent article (2022), Singer explains that already Abel was aware of this corollary
but that we have no trace of Abel’s precise statement.

Modern proofs of this corollary were already obtained by Ritt and Risch.

(2) Furthermore, Risch’s algorithm decide whether
∫
f (z)dz is implicitly elementary or not.

(3) Corollary (implicit Davenport-Singer). Consider an inhomogeneous linear differential
equation

(L) : y (s) + as−1(z) · y (s−1) + . . .+ a−1(z) · y = b(z)

where ai (z), b(z) ∈ C(z)alg . If (L) has an implicitly elementary solution, then (L) has
a solution of the form

y(z) = P(z, ln(R1(z)), . . . , ln(Rm(z)))

where P(z,−) ∈ C(z)alg [X1, . . . ,Xm] is a polynomial of degree ≤ s.
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A model-theoretic version of Liouville’s Theorem

Let f : U ⊂ C → C be an holomorphic function.

Theorem (J., Kirby)
Assume that both :

(a) the function f (z) is exponentially algebraic,

(b) the function f (z) belongs to some Picard-Vessiot extension of C(z)alg .

Then :

(Galois-theoretic information). The Galois group of the smallest Picard-Vessiot
extension of C(z)alg containing f (z) is isomorphic to Gk

a × Gl
m.

(explicit definition). The function f (z) is in fact an elementary function : a
construction of f (z) does not involve the implicit function theorem.

(Liouville’s theorem). there are finitely many algebraic functions
ui (z), vj (z),wk (z) ∈ C(z)alg such that we can write

f (z) = H(ln(ui (z)), exp(vj (z)), (wk (z))
λk )

where H ∈ C(X0, . . . ,XN)
alg is an algebraic function and the λk are complex numbers.

Furthermore, an improved formulation includes a relative version of the theorem, the case
of strongly normal extensions in the sense of Kolchin and the case of holomorphic functions
of several variables.
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Comparison with the classical results

Liouville : if f (z) is an algebraic function and
∫
f (z)dz is elementary then :∫

f (z)dz = R0(z, f (z)) +
n∑

i=1

λi · Ri (z, f (z))

Davenport-Singer : if an inhomogeneous linear differential equation admits an
elementary solution then it admits a (possibly different) elementary solution of the
form

f (z) = P(z, ln(S1(z)), . . . , ln(Sn(z))) with P(z,−) ∈ C(z)alg [X0, . . . ,Xn]

Main drawback (compared to Liouville) : Si (z) ∈ C(z)alg as well as the coefficients of
P(z,−). This is nevertheless sharp.

J.- Kirby :

f (z) = H(z, ln(ui (z)), exp(vj (z)), (wj (z))
λj , i , j , k = 1, . . . , n)

for any (implicitly) elementary function f (z) belonging to a Picard-Vessiot extension
of C(z)alg .

Main drawback (compared to Singer-Davenport) : no information about the “shape” of
the algebraic function H. This is nevertheless sharp.
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A (partial) map of the universe of exponentially algebraic functions
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Thank you for your attention !
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