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Introduction

Purpose of my talk. Describe a model-theoretic perspective on the problem of integration
of finite terms.

During the period between 1833 and 1841, Liouville presented a theory of integration
in finite terms based on the notion of elementary function.

As an application, Liouville studies functions of the differential calculus of the XIXth

century such as

erf(z) =
∫

e−z2dz, sn(z) =
∫

dz
√
z3 + az + b

and Ai(z) =
1
π

∫ ∞

0
cos(t3/3 + tz)dt

and shows that they can not be expressed “in a closed form” using the classical
functions of calculus : exp, ln and the trigonometric functions.

Since the second half of the XXth century, Liouville’s theory have been revisited from
several perspectives :

▶ differential algebra (Ritt 1948, Rosenlicht 1970, Prelle-Singer 1983...)
▶ topological Galois theory (Khovanskii 2015,...)
▶ symbolic computations (Risch 1969, Davenport 1981,...)
▶ transcendental number theory (Masser-Zannier 2020, Pila-Tsimerman 2022...)

In model theory, elementary functions appear in the work of Van den Dries (1988) on
the (strong) model completeness of the structure of restricted elementary functions :

RRE = (R, 0, 1,+,×, exp|[0,1], sin|[0,π]).
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Elementary functions in the sense of Liouville
An elementary function is a holomorphic function f : U ⊂ Cr → C which can be
constructed in finitely many steps from the variables z1, . . . , zr using :

arithmetic operations (+,×,−, /) involving possibly complex numbers,

precomposition by the complex exponential and branches of the logarithm,

extracting roots of (arbitrary) algebraic equations.

Examples.

f (z) =
ecos(z)

√
1 + z2

(1 + ln(1 + z)) or g(z1, z2) =
n
√

z1 + z2
1 · exp(z2).

A word of warning from Ritt (1948).

To resolve the ambiguity, it is often convenient to work with types in the theory DCF0
rather than with holomorphic functions.
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The problem of integration in finite terms

Liouville’s problem. Given an elementary function f (z) of one variable (say, defined on a
simply connected domain),

(1) decide whether some/any antiderivative
∫
f (z)dz is an elementary function

(2) compute
∫
f (z)dz if it is an elementary function.

Some classical examples
Rational functions. Using the partial fraction decomposition, one can always compute

∫
P(z)/Q(z)dz = R(z)︸ ︷︷ ︸

rational function

+

weighted sum of logs︷ ︸︸ ︷∑
α root of Q

Res(P/Q, α) · ln(z − α) .

Certain trigonometric integrals. Using integration by parts and substitutions,∫
cos(z)3dz = sin(z)− sin(z)3/3 but

∫
cos(z2)dz =??

Quadratic formula. the antiderivative of “quadratic” algebraic functions can be
computed using : ∫

dz
√

1 − z2
= arcsin(z) = −i · ln(iz +

√
1 − z2).
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Mémoire sur l’intégration d’une classe de fonctions transcendantes (Crelle,
1833)
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Liouville’s theorem
Theorem (Liouville, 1833). Let f (z) be an elementary function. If

∫
f (z)dz is also

elementary then it takes the special form

∫
f (z)dz = R0(z, f (z), f

′(z), . . . , f (n)(z))︸ ︷︷ ︸
rational function

+

weighted sum of logs︷ ︸︸ ︷
m∑
i=1

ci · ln(Ri (z, f (z), . . . , f
(n)(z))

where c1, . . . , cm ∈ C and R0, . . . ,Rm ∈ C(X0, . . . ,Xn+1).

In particular for f (z) = e−z2 , f ′(z) = −2zf (z) and Liouville reaches :∫
e−z2dz = R0(z, e

−z2 ) +
m∑
i=1

ci · ln(Ri (z, e
−z2 )),

takes the derivative and shows that it does not admit any solution.

Developing a (sophisticated) structure theory based on Liouville’s theorem, Risch
(1970+) shows that the problem of integration in finite terms is decidable. It is
considered as a milestone in the development of mathematics.

The complete (published) proof of decidability only appears in a recent volume (2022)
edited by Singer and Raab.
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How to improve on Liouville’s theory ?
Objective. Replace in Liouville’s theory{

Liouville’s class of
elementary functions

⇝
{

holomorphic functions locally definable in
RRE = (R, 0, 1,+,×, exp|[0,1], sin|[0,π]).

Motivation
Elementary functions vs implicitly defined elementary functions. The larger class of
functions is stable under the implicit function theorem.

Liouville (1837) shows that the Lambert W-function given by

W (z) =
∞∑
n=0

(−n)n−1

n!
zn solution of W (z) · eW (z) = z

is not an elementary function.
In a slightly more “modern” context,{

class of
Pfaffian functions

⇝
{

holomorphic functions locally definable in
RPfaff = (R, (rest. Pfaffian functions )

Freitag shows that the j-function can not be integrated by Pfaffian functions but Jones and
Speissegger show that it is locally definable in RPfaff.

Account for additional formulas from calculus.∫
W (z) + 1

z
dz = W (z)2/2 + W (z) + ln(z) but

∫
W (z)

z2 dz = ??
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The short answer

Theorem (J., Kirby). Let f (z) be a holomorphic function locally definable in RRE. If∫
f (z)dz is also locally definable in RRE then it takes the special form

∫
f (z)dz = R0(z, f (z), f

′(z), . . . , f (n)(z))︸ ︷︷ ︸
rational function

+

weighted sum of logs︷ ︸︸ ︷
m∑
i=1

ci · ln(Ri (z, f (z), . . . , f
(n)(z))

where c1, . . . , cm ∈ C and R0, . . . ,Rm ∈ C(X0, . . . ,Xn+1).
In particular, if f (z) is an elementary function then

∫
f (z)dz is locally definable in RRE if

and only if it is elementary.

Remark. In the case where f (z) is an algebraic function, an equivalent form of this
statement was already known to... Abel (1802-1829) and hence (in some sense) this
statement even precedes Liouville’s theorem !
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Exponential algebraicity for holomorphic functions

The concept of exponential algebraicity goes back to the work of Macintyre and Zilber
on exponential algebra. To any (full) exponential field (K , exp), they associate a
pregeometry

eclK : P(K) → P(K)

One of the main goal is to get a notion applicable to the study of “numbers” i.e. to
the structure (C, exp).
Instead, we are interested in a notion of exponential algebraicity applicable to the
study of holomorphic and meromorphic functions only.

Two important differences.
(1) “functions behave better than numbers” : this pregeometry comes as the forking

pregeometry of a regular type of rank ω in an ω-stable theory.

(2) “functions can be restricted and glued together” : the notion should (at least) be
preserved under restriction of function to smaller open sets.

To account for these differences, we work inside a model (U , ∂) |= DCF0 with field of
constants C and work with a blurred version of an exponential map given as a subgroup

Γexp := {(x , y) ∈ U × U∗ | ∂(x) =
∂(y)

y
} ⊂ (U ,+)× (U∗,×).

In a functional framework, similar uses of exponential algebraicity for holomorphic functions
goes back to the work of Wilkie (2008) and Jones, Kirby, Servi (2014).
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Blurred exponential fields

Definition. Let K/C be an extension of algebraically closed fields of characteristic zero and
Γ ⊂ K × K∗. We say that (K ,C , Γ) is a exponential field blurred by C (or simply a blurred
exponential field) if

(i) Γ is a divisible subgroup of (K ,+)× (K∗,×),

(ii) Γ ∩ (K × C∗) = C and Γ ∩ (C × K∗) = C∗.

Comments.
Blurred exponential fields are studied in the language LΓ = Lrings ∪ {Γ} and are a
particular case of Γ-fields in the sense of Bays and Kirby (2015).

If (K , ∂) is an algebraically closed differential field with field of constants C and

Γ∂ := {(x , y) ∈ U × U∗ | ∂(x) =
∂(y)

y
} ⊂ (K ,+)× (K∗,×)

then (K ,C , Γ∂) is an exponential field blurred by C .

There is a “distinguished” complete LΓ-theory :

BE0 := ThLΓ
(K ,C , Γ∂) for (K , ∂) |= DCF0

which inherits as a reduct the good tameness properties of DCF0.

A first-order axiomatization of BE0 based on the Ax-Schanuel Theorem and
existential closedness axioms has been described by Kirby (2007).
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A paradox : passing to a reduct to extract more information...

The problem of integration in finite terms requires to “measure” the difference between

f1(z) = arcsin(z) =
∫

dz
√

1 − z2
and f2(z) = sn(z) =

∫
dz

√
z3 + az + b

.

Working inside DCF0. Set pi = tpDCF0 (fi (z)/C(z)alg ) for i = 1, 2.

p1 and p2 are both strongly minimal types.

p1 and p2 are both internal to the constants,

p1 and p2 both have the additive group for Galois group,
... but the two equations (E1) and (E2) isolating the types

(E1) : y
′ = 1/

√
1 − z2 and (E2) : y

′ = 1/
√

z3 + az + b

are not “gauge equivalent”.

Working inside BE0. Set qi = tpBE0 (fi (z)/C(z)alg ) for i = 1, 2.

q1 is strongly minimal and q2 is the unique type of rank ω. (to be explained !)

Conclusion of this observation. We will study the PIFT using the continuous map

red : SDCF0 (C(z)alg ) → SBE0 (C(z)alg )

associated with passing to the reduct DCF0 → BE0.
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Description of the types of finite Morley rank in BE0

Question. When does tpBE0 (g(z)/C(z)alg ) have finite Morley rank ?

The Ax-Schanuel Theorem (1971). Let f1, . . . , fn : U ⊂ C → C be holomorphic functions.
Then

td(f1(z), · · · , fn(z), ef1(z), . . . , efn(z)/C(z)) ≥ n

provided the functions f1, . . . , fn are Q-linearly independent modulo C.

Characterization of the types of fMR in BE0. Let g1, . . . , gn : U ⊂ C → C be a tuple of
holomorphic functions. The following are equivalent :

(i) the type tpBE0 (g(z)/C(z)alg ) has finite Morley rank,

(ii) There exists N holomorphic functions f1, . . . , fN : V ⊂ U → C, Q-linearly independent
modulo C satisfying the equality case in the Ax-Schanuel inequality that is

td(f1(z), · · · , fN(z), ef1(z), . . . , efN (z)/C(z)) = N

such that

gi (z) = Hi (z, f1(z), . . . , fN(z), e
f1(z), . . . , efN (z)), i = 1, . . . , n

where H1, . . . ,Hn ∈ C(X0, . . . ,X2N)
alg .

Comment. The natural number N appearing in (ii) is then an upper bound for the Morley
rank of tpBE0 (g(z)/C(z)alg ) but this is not sharp.
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Description of the types of finite Morley rank in BE0

Question. When does tpBE0 (g(z)/C(z)alg ) = tpBE0 (h(z)/C(z)alg ) assuming that both
have finite Morley rank ?

Exponential hull. Assuming that N is chosen minimal such that (ii) holds in the previous
characterization then set

Hull(C(z, g(z))) := C(z, f1(z), . . . , fN(z), ef1(z), . . . , efN (z))alg .

This hull does not depend on the choices of the functions f1(z), . . . , fN(z)) realizing (ii).

Characterization of the types of fMR in BE0. Let g1, . . . , gn, h1, . . . , hn : U ⊂ C → C be
two tuples of holomorphic functions of fMR over C(z)alg . The following are equivalent :

(i) tpBE0 (g(z)/C(z)alg ) = tpBE0 (h(z)/C(z)alg ),
(ii) There exists an isomorphism of LΓ-structures

ϕ : Hull(C(z, g(z))) → Hull(C(z, h(z)))

fixing C(z)alg and sending g(z) to h(z).
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Description of red : SDCF0(C(z)alg ) → SBE0(C(z)alg )
Theorem (Wilkie 2008, Kirby 2007-2010). Let p ∈ SDCF0

n (C(z)alg ) be a type which is
weakly orthogonal to the constants. The following are equivalent :

(i) (realization in RRE) there exists n holomorphic functions definable in

RRE = (R, 0, 1,+,×, exp|[0,1], sin|[0,π])

realizing the type p.

(ii) (types of fMR in the reduct) red(p) has finite Morley rank in BE0.

(iii) (faithful reduction) red(p) ⊢ p in DCF0.

Under these conditions, we say that p is an exponentially algebraic type.

At the level of 1-types...
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Definable Galois theory in BE0

Definable Galois theory is a geometric stability device introduced by Poizat and
developed by Pillay during the nineties in relation with the notion of internality (in the
sense of geometric stability theory).

In the ω-stable theories DCF0 and more recently CCM, its study provides key insights
about the fine structure of the type spaces. Similarly for BE0, ...

Theorem 1. (J., Kirby) Let p ∈ SDCF0
1 (C(z)alg ) be an exponentially algebraic type.

(i) (Zilber’s trichotomy) up to nonorthogonality, there is a unique minimal nonlocally
modular type in the theory BE0 : the generic type of the pure algebraically closed field
C of “constants”.

(ii) (compatibility between the Galois theories) the type p is internal to the constants in
DCF0 if and only if red(p) is internal to the “constants” in BE0 and

AutDCF0 (p/C) ≃ AutBE0 (red(p)/C).

(iii) (inverse Galois problem) if p is internal to the constants then the binding group
AutDCF0 (p/C) is of the form

AutDCF0 (p/C) ≃ Gk
a (C)× Gl

m(C).
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Some Liouville calculus based on Theorem 1

Corollary. The three functions

erf(z) =
∫

e−z2dz, sn(z) =
∫

dz
√
z3 + az + b

and Ai(z) =
∫ ∞

0
cos(u3/3 + uz)du

are not locally definable in RRE.

Proof
Their types over C(z)alg are isolated respectively by the formulas

y ′′ − 2z · y ′ = 0, y ′ ̸= 0︸ ︷︷ ︸
Aff2(C)

, y ′ =
1

√
z3 + az + b︸ ︷︷ ︸
Ga(C)

and y ′′ − z · y = 0, y ̸= 0︸ ︷︷ ︸
SL2(C)

.

For erf(z) and Ai(z), the Galois-theoretic information is conclusive. For sn(z), any
local compositional inverse of sn(z) satisfies the elliptic equation

(y ′)2 = y3 + ay + b︸ ︷︷ ︸
an elliptic curve E(C)

.

Using the same “trick” of considering local compositional inverses :

Corollary. The j-function is not locally definable in RRE.
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Integrability by elementary functions vs integrability in RRE

Theorem 2. (J., Kirby) Let f : U ⊂ C → C be an holomorphic function. The function f is
an elementary function in the sense of Liouville if and only if

(a) the function f is locally definable in RRE,

(b) tpDCF0 (f (z)/C(z)alg ) is analyzable in the constants.

Application to more Liouville calculus...
Risch’s decision procedure (or any practical implementation of it on a computer
software) can be used to decide whether the antiderivative

∫
f (z)dz of an elementary

function f (z) is locally definable in RRE :

tpDCF0 (f (z)/C(z)alg ), tpDCF0 (

∫
f (z)dz/C(z, f (z))alg ) are both analyzable in C.

Similarly, any solution f (z) locally definable in RRE of a linear differential equation

y (n) + an−1(z) · y (n−1) + · · · a0(z) · y(z) = b(z)

whose coefficients are elementary functions is in fact elementary.
On the other hand, the Lambert W -function

W (z) =
∞∑
n=0

(−n)n−1

n!
zn solution of z(1 + W )

dW

dz
= W

satisfies that tpDCF0 (W (z)/C(z)) is strongly minimal and geometrically trivial.
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A generalization of Liouville’s Theorem

Theorem 3 (J., Kirby). Let f (z) be a holomorphic function locally definable in RRE. If∫
f (z)dz is also locally definable in RRE then it takes the special form

∫
f (z)dz = R0(z, f (z), f

′(z), . . . , f (n)(z))︸ ︷︷ ︸
rational function

+

weighted sum of logs︷ ︸︸ ︷
m∑
i=1

ci · ln(Ri (z, f (z), . . . , f
(n)(z))

where c1, . . . , cm ∈ C and R0, . . . ,Rm ∈ C(X0, . . . ,Xn+1).

Comments.
in the case where f (z) is an elementary function, then one apply the strategy
described by Singer to obtain Abel’s generalization of Liouville theorem :

Theorem 2 + original Liouville’s theorem ⇒ Theorem 3.

in the general case, we adapt Rosenlicht’s differential algebraic proof of Liouville’s
theorem to this set-up using the (concrete) description of types of fMR in BE0.
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Three open questions

(Minimal types in BE0) Using Zilber’s notion of perfectly rotund subvariety of
(Ga × Gm)n, it is possible to show the existence for every n ≥ 1 of minimal
exponentially algebraic type p ∈ SDCF0

1 (C(z)alg of order n.

Question. Are all minimal locally modular exponentially algebraic types ω-categorical ?
How to show that the generic types of the Manin Kernels are not exponentially algebraic ?

(Decidability for n-types in BE0) Considering several functions instead of a single one,
an analogue of the PIFT is to compute the exponential transcendence degree :

(f1(z), . . . , fn(z)) 7→ etd(f1(z), . . . , fn(z)/C(z)alg ) ∈ {0, . . . , n}

For example, we can show that etd(erf(z), sn(z),Ai(z)/C(z)alg ) = 3.

Question. Is there a decision procedure which given n algebraic functions f1(z), . . . , fn(z)
computes the exp. trans. degree of

∫
f1(z)dz, . . . ,

∫
fn(z)dz over C(z)alg ?

(elliptic and abelian functions) The direct analogue of the Kirby-Wilkie Theorem holds
true taking into account the exponential maps

exp : LA → A of all complex semi-abelian varieties A.

Question. Is it possible to prove analogues of Theorem 1 and Theorem 3 including the
exponential maps of some/all complex semi-abelian varieties ?
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Thank you for your attention !
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