LECTURE 6. THE AX-SCHANUEL THEOREM

6.1. Commutative algebraic groups. Let k£ be algebraically closed field and let G be a commutative
connected algebraic group. This means that G is an algebraic variety (over k) equipped with a regular map

m:GxG—G

such that (G, m) is a commutative group (in the usual sense). The assumption that G is connected means
that G is irreducible as an algebraic variety. Equivalently:

Exercise 6.1. Let G be a (commutative) algebraic group. Show that G is irreducible as an algebraic variety
if and only if G does not have nontrivial finite quotients.

Proof. If G is an algebraic group then G acts transitively on the (finite) set of its irreducible components.
Hence, producing a nontrivial finite quotient of G whenever G is not irreducible. Conversely, if G has a
nontrivial finite quotient, the Zariski-closures of the cosets of the subgroup defining this quotient define a
partition of X into (irredundant) Zariski-closed subsets of G which has to be trivial by irreducibility. (Il

Examples of connected algebraic groups includes
e the additive group G, which as an algebraic variety is the affine line k£ and with multiplication given
by the polynomial
(x1,22) — 1 + T2
with ring of regular functions k[z] the ring of polynomials

e the multiplicative group G,, which as an algebraic variety is the open subset k* of k given by y # 0
and with multiplication and with multiplication given by

(y1,92) = Y1 - y2

with ring of regular functions k[y,y~1].
e any elliptic curve E and any product of such groups

G =GF x Gl x E™ where k,I,m € N.

For the purpose of this course, we will focus on the case of the additive and the multiplicative group and
hence on the groups of the form

G=GFxGl kleN

but the proof of the Ax-Schanuel theorem goes through for the exponential maps of elliptic curves as well.
We write the ring of regular functions on G as:

k[G) = k[xh...,ack,yl,...,yl,yf17...,yf1]
where k[x1, ..., 3] is the ring of regular functions on G¥ and k[yi, ..., v, yf17 . ,yfl] is the ring of regular
functions on GI,.
Lemma 6.2 (Goursat’s lemma). Any algebraic subgroup H of G = G¥ x Gl | k,1 € N is of the form
H = H; x Hy

where Hy C Gk and Hy C GL, are subgroups. Moreover, any subgroup Hy of G" is a k-subvector space and

any subgroup Hy of Gl can be written as

H2 = m Ker(an ..... nl)
(nl,...,m)eS

ng

where Xn, .0 (Y1, Yn) = Y1 -yt and S is a finite set of I-tuples of integers.
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Proof. We first prove the second part of the statement. First note that if H; is a subgroup of G¥ then
O(HQ):{IGIC* |IH1:H1}

is a definable subset of k which contains Z. By elimination of quantifiers in the theory ACFy; it follows that
C(H,) is a cofinite subgroup of k* and hence equal to k*. It follows that H; is a k-vector subspace of G~.
Now consider Hy a subgroup of G,lm and set

m:GL = Gl /H,.

The group N = G, / H is commutative connected and linear as these properties are preserved under quotient.
Consider now the subgroup
Tor(N)={x € N|IneN,n-x=epn}.

All the elements of Tor(/N) are diagonalizable and hence codiagonalisable since this is a commutative group.
Since N is the Zariski-closure of Tor(V), it follows that N C G2, for some p and therefore that

H, = ﬂ Ker(x)
XES

where y : G!, — G,, are group morphism and S is a finite set of such morphisms. It remains to show that
any such morphism has the form
(- y) =yt -yt

To see this consider

k[yayil] *>k[y17"'7ylay1_17"'7y[_1]

fe fox
and note that y must be sent to an invertible element of k[y1,. ..,y yfl, ey y;l] and therefore y = y{* - y&
as required.

Now to prove the first part of the statement, denote by N; the intersection of H with G¥ x {e}, H; the

image of H in G and correspondingly Ns the intersection of H with {e} x G!, and Hj the image of H in
G!,. Following Goursat, we claim that H defines an algebraic group morphism

¢p : Hy/Ny — Hy/Ny.
given by
ou(ly]) =[] iff (z,y) € H
By the first part of the statement, Hs/Ny has dense torsion points and H;/N; has no torsion points. It

follows that ¢p is the trivial morphism. Rewinding the definition of ¢, we obtain that H = H; x Hs as
required. (Il

Definition 6.3. Let G’ be a commutative connected algebraic group. Denote by R, :  +— x - g the right
multiplication by g. We say that a one-form w € Q' (k(G)/k) is G-invariant if

(1) Ryw =w for all g € G.

Lemma 6.4. Let G be a commutative (affine) algebraic group and w # 0 an invariant one-form on G. Then
the one-form w is reqular on G, closed and does not vanish at any point p € G.

Proof. Take U an open set of X such that w is a regular one-form on U and consider the associated function
w:TU = k

For every g € G, wo TR, : T(Ry(U)) — k is the function corresponding to Rjw and the equality means
that the functions & and TR, o @ agree on TR,(U)NTU = T(U N Ry(U)). Since {TRy(U) | g € G} is an
open cover of X, this function can be glued together to produce a global function @ : TG — k which defines
a regular one-form @ on the whole of G. Hence, any G-invariant form extends to a regular form on G. Note
moreover that if

w(e) : T.G — k
is the linear form defined by w on T.G then

w(g) =w(e)odRy-—1 : T,G = T.G =k
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is the one-form defined by w on G. It follows that w does not vanish at any point p € G and that the space
of G-invariant forms is a complex vector space of finite dimension. Finally to see that w is closed, we assume
for simplicity that G = G¥, x G',. Note that

w = Aidz1 + -+ Medg and 1 = padyr/yr + -+ prdyi/y

form the k-vector space of invariant forms on G¥ and G!, respectively. It follows that a closed invariant
one-form on GL X Gﬁl is of the form Ajdxzy + -+ + Agdxg + prdyr/y1 + - .. + prdy;/y; which is closed by a
direction inspection. O

Proposition 6.5. Let G be a commutative (affine) algebraic group and w an invariant one-form on G.
There exists a subgroup H of G such that the partition of G into w-leaves given by Frobenius integrability
Theorem is the partition of G into H -cosets.

Proof. Since the one-form w is invariant so is the partition X = | |,. 4, L4 into w-leaves. It follows that any
w-leaf is of the form L. - g for some g € G and hence it is enough to see that L. is a subgroup of G. To see
this, note that if g € £, then

£e'g:£e

as they are two equivalence classes containing a common element. It follows that the inverse of g lies in £,
and that if g,h € L, then

g-hel. - (g-h)=L.-h=L.
|

6.2. An exact sequence. Let K/k be a field extension of characteristic zero and consider L an intermediate
subfield. We construct two morphisms of K-vector spaces.

(1) Viewing Q'(K/k) as an L-vector space, we obtain a morphism of L-vector spaces
ip : QYL/E) — QY (K/k)
obtained by applying Lemma ?? to djr, : L — Q' (K /k).
The usual properties of the tensor product gives an identification
Homp, _yeet (QN(L/K), QYK /E)) ~ Homg _yeer (N (L/E) @1 K, Q' (K /k))

which is the (functorial) adjunction between extension and restriction of scalars in commutative algebra. So
that the morphism ¢; corresponds to a morphism of K-vector spaces:

g QYL/k) @ K — QYK /k)

(2) Applying Lemma ?? to the extension K/k and the morphism d = dg/r, : K — Q'(K/L), we obtain
a morphism of K-vector spaces

sy QYK/k) — QYK/L).
Corollary 6.6. With the notation above, the sequence
0— QYL/K) @ K 25 QY (K/k) % QY(L/K) = 0
is a short exact sequence of K-vector spaces

Proof. To see that j, is injective, it is enough to see that iy, is injective. This follows from Theorem ?? and
the fact that a transcendence basis of L/k can be completed into a transcendence basis of K/k. Similarly
any transcendence basis of K/L can be completed into a transcendence basis of K/k so that sy, is surjective
by Theorem ??. Finally, the property that sy o j, = 0 follows from the fact

sr(dxjef) =dpf =0 forany f € L

and that Q'(L/k) @ K is generated as a K-vector space by one-forms of this form. O
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6.3. Liouville-Rosenlicht Theorem.

Theorem 6.7 (Liouville-Rosenlicht Theorem). Let K/k be an extension of fields of characteristic zero with
k algebraically closed. Assume that f1,..., fn, € K* and g € K are elements of K chosen such that

> i % +dg=0e QY (K/k)
i=1 v

where the ¢; are Q-linearly independent elements from k. Then f1,..., fn,g € k.

We assume that & = C in the proof which will be sufficient for our purposes. The interested reader can check
that the general case actually follows from this particular case (exercise).

Proof. Set L =k(f1,..., fn,g). Since the canonical morphism
QYL/k) — QYK /E)

is injective, we may assume that K = L. This implies that:

(i) K is finitely generated over k and hence write K = k(X) as the function field of an irreducible
algebraic variety X over k.
(ii) f1,...,fn,g can be identified as rational functions on X and

(f17"’7fn7g) X - GZL XG“

defines a birational equivalence between X and the Zariski-closure of its image in G}}, x G,.

So we may assume that K = k(X) where X is an irreducible Zariski-closed subset of G = G, x G,. The
hypothesis then says that the invariant one-form on G given by

n
W = E C; -
i=1

vanishes identically along X that is i*w = 0 where ¢ : X — G}, X G,. It follows from Frobenius integrability
theorem that (the image of) X is contained in a w-leaf of w in G, x G,. Up to a replacing X by a translate,
we may assume that X is contains the identity element of G}}, x G, and is therefore contained in the leaf £,
through the identity element e. We now set

H=(X)CL.CG

L4 da

dy
Ui

K2

and use:

Theorem 6.8 (Chevalley-Zilber). Let X be an irreducible subvariety of an algebraic group G containing the
identity element of G. Then the group (X) generated by X is a connected algebraic subgroup of G.

which implies that:
HC G=G,yx Gy
is an algebraic subgroup. The first part of Goursat’s lemma then implies that

H:HleQCGaXG:Ln

Note that Hs is a proper algebraic subgroup of G}, since the projection of £, in G}, is the n-leaf of

St
i=1 v

which is a proper subgroup of G7,. It follows from the second part of Goursat’s lemma that

Hy = ﬂ Ker(Xm,..-,m)-
(nl,‘..,nl)eS

so that T, Hs contains a nontrivial vector [l
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6.4. The Ax Schanuel Theorem.

Theorem 6.9 (Ax-Schanuel). Let K be a differential field (for a derivation 0) with an algebraically closed
field of constants C'. Consider x1,...,x, € K and write y1,...,y, € K for exponentials of z1,...,x, € K.
Then

td(z1, ..y Ty Y1y, Yn/C) > 1

provided x1, . ..,xT, are Q-linearly independent modulo C'.
Proof. Set L =C(z1,...,Zn,Y1,-.-,Yn) and consider for i = 1,...,n
_ dyi

Yi

—dz; € QYL/C) c QY(K/C)

ws
where the inclusion is given by the canonical identification of Q!(L/C) with a L-vector subspace of Q! (K/C')
Claim. As elements of Q' (K/C), we have fori=1,...,n, Lo(w;) = 0.

Proof. This is a direct consequence of the definition of the Lie-derivative using additivity, the chain rule and
the Leibniz rule. Indeed, we have

dy; A(yi d(9(y: Ay
£y Oy dO)) _ 00

Yi Yi Yi Yi
so that

Lowi) = £o(% — az) = a2W) _ oz =o.
Yi Yi
O

Claim. wi,...w, are K-linearly independent in Q' (K/C).
Proof. Otherwise, wy,...w, are K-linearly dependent. We first show that wy,...,w, are C-linearly depen-

dent. Take
i=1

by a linear combination with a minimal number of nonzero coefficients. Without loss of generality, we may
assume that Ay = 1. Applying the Lie-derivative, we obtain

Ea(z )\z . wi) = Za()\,) - Wi
i=1 =2

from which it follows by minimality of the nontrivial linear combination that all A\; € C. It follows that

w1, . ..,wy are C-linearly dependent so that we have a one-form
i=1 i=1 Yi i=1

where \; € C. Up to replacing (z;,y;) for i =1,...,n by

n n
— €ij —
zj—Hyi and §; = E €5 " Ty
i=1 i=1

for j =1,...,s, we obtain a relation of the form

S

° dz;
Ay &)= - —
j=1 j=1 J

where the v; are Q-linearly independent complex numbers which by Liouville-Rosenlicht’s theorem implies
that &1,...,&, and therefore x4, ..., x, are Q-linearly dependent modulo C. O
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To finish the proof of the theorem, note that we have obtained that
Spang (w1, . ..,w,) C QY(L/C)
so that td(L/C) = 1dimy(Q!(L/C)) > n. To obtain the strict inequality, it is enough to show that
Spang (wi, ... ,w,) # QY(L/C).
To see this, consider the restriction of the derivation
or:L— K

as a K-valued derivation on L which is nontrivial since d(z;) # 0 for example. Using the universal properties
of Q(L/k), we do obtain a morphism of L-vector spaces

¢: QY L/C) = K
such that ¢(df) = 9(f) for any f € L. It follows that

N dyi —de) = A(y:)
P(wi) = ¢( i dz;) Yi

— 6(.%1) =0

and therefore
Span; (w1, . . .,w,) C Ker(¢) € QY(L/O)
as required. This concludes the proof of the Ax-Schanuel Theorem. |
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