
LECTURE 6. THE AX-SCHANUEL THEOREM

6.1. Commutative algebraic groups. Let k be algebraically closed field and let G be a commutative
connected algebraic group. This means that G is an algebraic variety (over k) equipped with a regular map

m : G×G → G

such that (G,m) is a commutative group (in the usual sense). The assumption that G is connected means
that G is irreducible as an algebraic variety. Equivalently:

Exercise 6.1. Let G be a (commutative) algebraic group. Show that G is irreducible as an algebraic variety
if and only if G does not have nontrivial finite quotients.

Proof. If G is an algebraic group then G acts transitively on the (finite) set of its irreducible components.
Hence, producing a nontrivial finite quotient of G whenever G is not irreducible. Conversely, if G has a
nontrivial finite quotient, the Zariski-closures of the cosets of the subgroup defining this quotient define a
partition of X into (irredundant) Zariski-closed subsets of G which has to be trivial by irreducibility. □

Examples of connected algebraic groups includes
• the additive group Ga which as an algebraic variety is the affine line k and with multiplication given

by the polynomial
(x1, x2) 7→ x1 + x2

with ring of regular functions k[x] the ring of polynomials
• the multiplicative group Gm which as an algebraic variety is the open subset k∗ of k given by y ̸= 0

and with multiplication and with multiplication given by

(y1, y2) 7→ y1 · y2
with ring of regular functions k[y, y−1].

• any elliptic curve E and any product of such groups

G = Gk
a ×Gl

m × Em where k, l,m ∈ N.

For the purpose of this course, we will focus on the case of the additive and the multiplicative group and
hence on the groups of the form

G = Gk
a ×Gl

m, k, l ∈ N
but the proof of the Ax-Schanuel theorem goes through for the exponential maps of elliptic curves as well.
We write the ring of regular functions on G as:

k[G] = k[x1, . . . , xk, y1, . . . , yl, y
−1
1 , . . . , y−1

l ]

where k[x1, . . . , xk] is the ring of regular functions on Gk
a and k[y1, . . . , yl, y

−1
1 , . . . , y−1

l ] is the ring of regular
functions on Gl

m.

Lemma 6.2 (Goursat’s lemma). Any algebraic subgroup H of G = Gk
a ×Gl

m, k, l ∈ N is of the form

H = H1 ×H2

where H1 ⊂ Gk
a and H2 ⊂ Gl

m are subgroups. Moreover, any subgroup H1 of Gn
a is a k-subvector space and

any subgroup H2 of Gl
m can be written as

H2 =
⋂

(n1,...,nl)∈S

Ker(χn1,...,nl
)

where χn1,...,nl
(y1, . . . , yn) = yn1

1 · · · ynl

l and S is a finite set of l-tuples of integers.
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Proof. We first prove the second part of the statement. First note that if H1 is a subgroup of Gk
a then

C(H2) = {x ∈ k∗ | x ·H1 = H1}

is a definable subset of k which contains Z. By elimination of quantifiers in the theory ACF0; it follows that
C(H1) is a cofinite subgroup of k∗ and hence equal to k∗. It follows that H1 is a k-vector subspace of Gk

a.
Now consider H2 a subgroup of Gl

m and set

π : Gl
m → Gl

m/H2.

The group N = Gl
m/H2 is commutative connected and linear as these properties are preserved under quotient.

Consider now the subgroup
Tor(N) = {x ∈ N | ∃n ∈ N, n · x = eN}.

All the elements of Tor(N) are diagonalizable and hence codiagonalisable since this is a commutative group.
Since N is the Zariski-closure of Tor(N), it follows that N ⊂ Gp

m for some p and therefore that

H2 =
⋂
χ∈S

Ker(χ)

where χ : Gl
m → Gm are group morphism and S is a finite set of such morphisms. It remains to show that

any such morphism has the form
(y1, . . . , yl) 7→ ye11 · · · yell

To see this consider {
k[y, y−1] → k[y1, . . . , yl, y

−1
1 , . . . , y−1

l ]

f 7→ f ◦ χ

and note that y must be sent to an invertible element of k[y1, . . . , yl, y−1
1 , . . . , y−1

l ] and therefore y = ye11 · yels
as required.

Now to prove the first part of the statement, denote by N1 the intersection of H with Gk
a × {e}, H1 the

image of H in Gk
a and correspondingly N2 the intersection of H with {e} × Gl

m and H2 the image of H in
Gl

m. Following Goursat, we claim that H defines an algebraic group morphism

ϕH : H2/N2 → H1/N1.

given by
ϕH([y]) = [x] iff (x, y) ∈ H

By the first part of the statement, H2/N2 has dense torsion points and H1/N1 has no torsion points. It
follows that ϕH is the trivial morphism. Rewinding the definition of ϕH , we obtain that H = H1 ×H2 as
required. □

Definition 6.3. Let G be a commutative connected algebraic group. Denote by Rg : x 7→ x · g the right
multiplication by g. We say that a one-form ω ∈ Ω1(k(G)/k) is G-invariant if

(1) R∗
gω = ω for all g ∈ G.

Lemma 6.4. Let G be a commutative (affine) algebraic group and ω ̸= 0 an invariant one-form on G. Then
the one-form ω is regular on G, closed and does not vanish at any point p ∈ G.

Proof. Take U an open set of X such that ω is a regular one-form on U and consider the associated function

ω̂ : TU → k

For every g ∈ G, ω̂ ◦ TRg : T (Rg(U)) → k is the function corresponding to R∗
gω and the equality (1) means

that the functions ω̂ and TRg ◦ ω̂ agree on TRg(U) ∩ TU = T (U ∩ Rg(U)). Since {TRg(U) | g ∈ G} is an
open cover of X, this function can be glued together to produce a global function ω̂ : TG → k which defines
a regular one-form ω on the whole of G. Hence, any G-invariant form extends to a regular form on G. Note
moreover that if

ω̂(e) : TeG → k

is the linear form defined by ω on TeG then

ω̂(g) = ω̂(e) ◦ dRg−1 : TgG → TeG → k
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is the one-form defined by ω on G. It follows that ω does not vanish at any point p ∈ G and that the space
of G-invariant forms is a complex vector space of finite dimension. Finally to see that ω is closed, we assume
for simplicity that G = Gk

m ×Gl
a. Note that

ω = λ1dx1 + · · ·+ λkdxk and η = µ1dy1/y1 + . . .+ µkdyl/yl

form the k-vector space of invariant forms on Gk
a and Gl

m respectively. It follows that a closed invariant
one-form on Gl

a × Gk
m is of the form λ1dx1 + · · · + λkdxk + µ1dy1/y1 + . . . + µkdyl/yl which is closed by a

direction inspection. □

Proposition 6.5. Let G be a commutative (affine) algebraic group and ω an invariant one-form on G.
There exists a subgroup H of G such that the partition of G into ω-leaves given by Frobenius integrability
Theorem is the partition of G into H-cosets.

Proof. Since the one-form ω is invariant so is the partition X =
⊔

a∈A La into ω-leaves. It follows that any
ω-leaf is of the form Le · g for some g ∈ G and hence it is enough to see that Le is a subgroup of G. To see
this, note that if g ∈ Le then

Le · g = Le

as they are two equivalence classes containing a common element. It follows that the inverse of g lies in Le

and that if g, h ∈ Le then
g · h ∈ Le · (g · h) = Le · h = Le

□

6.2. An exact sequence. Let K/k be a field extension of characteristic zero and consider L an intermediate
subfield. We construct two morphisms of K-vector spaces.

(1) Viewing Ω1(K/k) as an L-vector space, we obtain a morphism of L-vector spaces

iL : Ω1(L/k) → Ω1(K/k)

obtained by applying Lemma ?? to d|L : L → Ω1(K/k).

The usual properties of the tensor product gives an identification

HomL−vect(Ω
1(L/k),Ω1(K/k)) ≃ HomK−vect(Ω

1(L/k)⊗L K,Ω1(K/k))

which is the (functorial) adjunction between extension and restriction of scalars in commutative algebra. So
that the morphism il corresponds to a morphism of K-vector spaces:

jL : Ω1(L/k)⊗L K → Ω1(K/k)

(2) Applying Lemma ?? to the extension K/k and the morphism d = dK/L : K → Ω1(K/L), we obtain
a morphism of K-vector spaces

sL : Ω1(K/k) → Ω1(K/L).

Corollary 6.6. With the notation above, the sequence

0 → Ω1(L/k)⊗L K
jL→ Ω1(K/k)

sL→ Ω1(L/K) → 0

is a short exact sequence of K-vector spaces

Proof. To see that jL is injective, it is enough to see that iL is injective. This follows from Theorem ?? and
the fact that a transcendence basis of L/k can be completed into a transcendence basis of K/k. Similarly
any transcendence basis of K/L can be completed into a transcendence basis of K/k so that sL is surjective
by Theorem ??. Finally, the property that sL ◦ jL = 0 follows from the fact

sL(dK/kf) = dL/kf = 0 for any f ∈ L

and that Ω1(L/k)⊗L K is generated as a K-vector space by one-forms of this form. □
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6.3. Liouville-Rosenlicht Theorem.

Theorem 6.7 (Liouville-Rosenlicht Theorem). Let K/k be an extension of fields of characteristic zero with
k algebraically closed. Assume that f1, . . . , fn ∈ K∗ and g ∈ K are elements of K chosen such that

n∑
i=1

ci ·
dfi
fi

+ dg = 0 ∈ Ω1(K/k)

where the ci are Q-linearly independent elements from k. Then f1, . . . , fn, g ∈ k.

We assume that k = C in the proof which will be sufficient for our purposes. The interested reader can check
that the general case actually follows from this particular case (exercise).

Proof. Set L = k(f1, . . . , fn, g). Since the canonical morphism

Ω1(L/k) → Ω1(K/k)

is injective, we may assume that K = L. This implies that:
(i) K is finitely generated over k and hence write K = k(X) as the function field of an irreducible

algebraic variety X over k.
(ii) f1, . . . , fn, g can be identified as rational functions on X and

(f1, . . . , fn, g) : X 99K Gn
m ×Ga

defines a birational equivalence between X and the Zariski-closure of its image in Gn
m ×Ga.

So we may assume that K = k(X) where X is an irreducible Zariski-closed subset of G = Gn
m × Ga. The

hypothesis then says that the invariant one-form on G given by

ω =

n∑
i=1

ci ·
dyi
yi

+ dx

vanishes identically along X that is i∗ω = 0 where i : X → Gn
m ×Ga. It follows from Frobenius integrability

theorem that (the image of) X is contained in a ω-leaf of ω in Gn
m×Ga. Up to a replacing X by a translate,

we may assume that X is contains the identity element of Gn
m ×Ga and is therefore contained in the leaf Le

through the identity element e. We now set

H = ⟨X⟩ ⊂ Le ⊊ G

and use:

Theorem 6.8 (Chevalley-Zilber). Let X be an irreducible subvariety of an algebraic group G containing the
identity element of G. Then the group ⟨X⟩ generated by X is a connected algebraic subgroup of G.

which implies that:
H ⊊ G = Ga ×Gm

is an algebraic subgroup. The first part of Goursat’s lemma then implies that

H = H1 ×H2 ⊂ Ga ×Gn
m

Note that H2 is a proper algebraic subgroup of Gn
m since the projection of Le in Gn

m is the η-leaf of

η =

n∑
i=1

λi
dyi
yi

which is a proper subgroup of Gn
m. It follows from the second part of Goursat’s lemma that

H2 =
⋂

(n1,...,nl)∈S

Ker(χn1,...,nl
).

so that TeH2 contains a nontrivial vector □
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6.4. The Ax Schanuel Theorem.

Theorem 6.9 (Ax-Schanuel). Let K be a differential field (for a derivation ∂) with an algebraically closed
field of constants C. Consider x1, . . . , xn ∈ K and write y1, . . . , yn ∈ K for exponentials of x1, . . . , xn ∈ K.
Then

td(x1, . . . , xn, y1, . . . , yn/C) > n

provided x1, . . . , xn are Q-linearly independent modulo C.

Proof. Set L = C(x1, . . . , xn, y1, . . . , yn) and consider for i = 1, . . . , n

ωi =
dyi
yi

− dxi ∈ Ω1(L/C) ⊂ Ω1(K/C)

where the inclusion is given by the canonical identification of Ω1(L/C) with a L-vector subspace of Ω1(K/C)

Claim. As elements of Ω1(K/C), we have for i = 1, . . . , n, L∂(ωi) = 0.

Proof. This is a direct consequence of the definition of the Lie-derivative using additivity, the chain rule and
the Leibniz rule. Indeed, we have

L∂(
dyi
yi

) = −∂(yi)

y2i
dyi +

d(∂(yi))

yi
= d(

∂(yi)

yi
)

so that

L∂(ωi) = L∂(
dyi
yi

− dxi) = d(
∂(yi)

yi
− ∂(xi)) = 0.

□

Claim. ω1, . . . ωn are K-linearly independent in Ω1(K/C).

Proof. Otherwise, ω1, . . . ωn are K-linearly dependent. We first show that ω1, . . . , ωn are C-linearly depen-
dent. Take

e∑
i=1

λi · ωi = 0

by a linear combination with a minimal number of nonzero coefficients. Without loss of generality, we may
assume that λ1 = 1. Applying the Lie-derivative, we obtain

L∂(

e∑
i=1

λi · ωi) =

e∑
i=2

∂(λi) · ωi

from which it follows by minimality of the nontrivial linear combination that all λi ∈ C. It follows that
ω1, . . . , ωn are C-linearly dependent so that we have a one-form

ω =

n∑
i=1

λiωi = 0 =

n∑
i=1

λi ·
dyi
yi

− d(

n∑
i=1

λi · xi)

where λi ∈ C. Up to replacing (xi, yi) for i = 1, . . . , n by

zj =

n∏
i=1

y
ei,j
i and ξj =

n∑
i=1

ei,j · xi

for j = 1, . . . , s, we obtain a relation of the form

d(

s∑
j=1

γj · ξj) =
s∑

j=1

γj ·
dzj
zj

where the γj are Q-linearly independent complex numbers which by Liouville-Rosenlicht’s theorem implies
that ξ1, . . . , ξs and therefore x1, . . . , xn are Q-linearly dependent modulo C. □
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To finish the proof of the theorem, note that we have obtained that

SpanL(ω1, . . . , ωn) ⊂ Ω1(L/C)

so that td(L/C) = ldimL(Ω
1(L/C)) ≥ n. To obtain the strict inequality, it is enough to show that

SpanL(ω1, . . . , ωn) ̸= Ω1(L/C).

To see this, consider the restriction of the derivation

∂|L : L → K

as a K-valued derivation on L which is nontrivial since ∂(xi) ̸= 0 for example. Using the universal properties
of Ω1(L/k), we do obtain a morphism of L-vector spaces

ϕ : Ω1(L/C) → K

such that ϕ(df) = ∂(f) for any f ∈ L. It follows that

ϕ(ωi) = ϕ(
dyi
yi

− dxi) =
∂(yi)

yi
− ∂(xi) = 0

and therefore
SpanL(ω1, . . . , ωn) ⊂ Ker(ϕ) ⊊ Ω1(L/C)

as required. This concludes the proof of the Ax-Schanuel Theorem. □
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